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ABSTRACT 

The primary objective of this research is to model and optimize wastewater 

treatment process in a wastewater treatment plant (WWTP). As the treatment process is 

complex, its operations pose challenges. Traditional physics-based and mathematical- 

models have limitations in predicting the behavior of the wastewater process and 

optimization of its operations. 

Automated control and information technology enables continuous collection of 

data. The collected data contains process information allowing to predict and optimize 

the process.  

Although the data offered by the WWTP is plentiful, it has not been fully used to 

extract meaningful information to improve performance of the plant. A data-driven 

approach is promising in identifying useful patterns and models using algorithms versed 

in statistics and computational intelligence. Successful data-mining applications have 

been reported in business, manufacturing, science, and engineering.  

The focus of this research is to model and optimize the wastewater treatment 

process and ultimately improve efficiency of WWTPs. To maintain the effluent quality, 

the influent flow rate, the influent pollutants including the total suspended solids (TSS) 

and CBOD, are predicted in short-term and long-term to provide information to 

efficiently operate the treatment process. To reduce energy consumption and improve 

energy efficiency, the process of biogas production, activated sludge process and 

pumping station are modeled and optimized with evolutionary computation algorithms.  

Modeling and optimization of wastewater treatment processes faces three major 

challenges. The first one is related to the data.  As wastewater treatment includes physical, 

chemical, and biological processes, and instruments collecting large volumes of data. 

Many variables in the dataset are strongly coupled. The data is noisy, uncertain, and 

incomplete. Therefore, several preprocessing algorithms should be used to preprocess the 
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data, reduce its dimensionality, and determine import variables. The second challenge is 

in the temporal nature of the process.  Different data-mining algorithms are used to obtain 

accurate models. The last challenge is the optimization of the process models. As the 

models are usually highly nonlinear and dynamic, novel evolutionary computational 

algorithms are used.  

This research addresses these three challenges. The major contribution of this 

research is in modeling and optimizing the wastewater treatment process with a data-

driven approach. The process model built is then optimized with evolutionary 

computational algorithms to find the optimal solutions for improving process efficiency 

and reducing energy consumption.  
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ABSTRACT 

The primary objective of this research is to model and optimize wastewater 

treatment process in a wastewater treatment plant (WWTP). As the treatment process is 

complex, its operations pose challenges. Traditional physics-based and mathematical- 

models have limitations in predicting the behavior of the wastewater process and 

optimization of its operations. 

Automated control and information technology enables continuous collection of 

data. The collected data contains process information allowing to predict and optimize 

the process.  

Although the data offered by the WWTP is plentiful, it has not been fully used to 

extract meaningful information to improve performance of the plant. A data-driven 

approach is promising in identifying useful patterns and models using algorithms versed 

in statistics and computational intelligence. Successful data-mining applications have 

been reported in business, manufacturing, science, and engineering.  

The focus of this research is to model and optimize the wastewater treatment 

process and ultimately improve efficiency of WWTPs. To maintain the effluent quality, 

the influent flow rate, the influent pollutants including the total suspended solids (TSS) 

and CBOD, are predicted in short-term and long-term to provide information to 

efficiently operate the treatment process. To reduce energy consumption and improve 

energy efficiency, the process of biogas production, activated sludge process and 

pumping station are modeled and optimized with evolutionary computation algorithms.  

Modeling and optimization of wastewater treatment processes faces three major 

challenges. The first one is related to the data.  As wastewater treatment includes physical, 

chemical, and biological processes, and instruments collecting large volumes of data. 

Many variables in the dataset are strongly coupled. The data is noisy, uncertain, and 

incomplete. Therefore, several preprocessing algorithms should be used to preprocess the 
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data, reduce its dimensionality, and determine import variables. The second challenge is 

in the temporal nature of the process.  Different data-mining algorithms are used to obtain 

accurate models. The last challenge is the optimization of the process models. As the 

models are usually highly nonlinear and dynamic, novel evolutionary computational 

algorithms are used.  

This research addresses these three challenges. The major contribution of this 

research is in modeling and optimizing the wastewater treatment process with a data-

driven approach. The process model built is then optimized with evolutionary 

computational algorithms to find the optimal solutions for improving process efficiency 

and reducing energy consumption.  
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

To protect clean water, wastewater needs to be treated before discharge back to 

the nature. Wastewater treatment plants (WWTPs) involve several different processes to 

treat wastewater at different stages.  
 
 
 

Figure 1.1. Flow schematic diagram of a typical WWTP 
 
 
 

A flow diagram of a typical WWTP process is shown in Figure 1.1. The collected 

wastewater enters the plant and passes through bar screens. The large items such as rags, 

sticks are screened and are disposed later.  After screening, the influent wastewater enters 

a wet well and then being pumped to primary clarifiers. After maintaining a retention 

time of 1 to 2 hours, the scum floats to the surface where it is removed by a skimmer. 

Then the wastewater is delivered to aeration tanks by intermediate pumps. Process air is 

provided by single-stage, centrifugal blowers to and around the aeration tanks. During 



www.manaraa.com

2 
 

 

normal operation partial of the sludge from the secondary clarifiers, called returned 

activated sludge (RSL), enters into aeration tanks through sludge pumps. When the RSL 

and the wastewater are mixed together, microorganisms in activated sludge use the 

oxygen provided by the fine bubble diffusers located on the bottom of the aeration basins 

to break down the organic matters. The remaining sludge from the secondary clarifiers 

and the sludge from the primary clarifiers are pumped to the anaerobic digesters to 

produce biogas. The liquid from the secondary clarifiers flows to the chlorine contact 

tanks where chlorine is injected into the flow to kill most bacteria, and then the final 

effluent is discharged to the river.  

During the whole process, physical, chemical and biological sub-processed 

involved. The process is highly nonlinear and dynamics. The WWTPs are controlled by 

experience and some small scale experimental results. Therefore, the plants are not well 

optimally operated. The energy consumed by raw wastewater boosting pumps and air 

blowers are partially wasted. Heavy rainfall may overwhelm the plant, causing spills and 

overflows due to unaccurate estimation of plant influent flow based on experience.   

Therefore, modeling and optimization of wastewater treatment process has been 

an interest of industries and researchers. However, it is difficult to use traditional 

methods to perform this task due to the complex and nonlinear nature of the process, such 

as physical and mathematical based models.  

With the development of the information technology and automated instruments, 

large volume process data is recorded in WWTPs. This enables another approach, data-

driven approach, to model and optimize the process. A data-driven approach is a 

promising method for finding useful information through the data. It is the process of 

finding patterns by algorithms versed on the crossroads of statistics and computational 

intelligence. Successful data-mining applications have been reported in business and 

marketing, manufacturing, science and engineering.  
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With the data-driven approach, the treatment process can be accurately 

represented by models without solving complex physical and mathematical equations. 

The models can be used to predict the behavior of the plant and be solved with 

evolutionary algorithms to find the optimal control settings to save energy and improve 

energy efficiency. 

1.2 Research objectives 

The primary goal of this research is to provide a systematic data-driven approach 

to model and optimize the wastewater treatment process. The goal can be achieved with 

the following objectives: 

1) Forecast the plant influent flow based on a novel way to provide useful 

influent flow information to plant management. 

2) Predict the total suspended solids in wastewater to provide information to 

select chemical and biological control strategy. 

3) Predict CBOD in wastewater. 

4) Model and optimize the wastewater boosting process to reduce energy 

consumption by pumps 

5) Model and optimize the activated sludge process to improve the energy 

efficiency  

6) Model and optimize the sludge digestion process to maximize the biogas 

production. 

To the author’s knowledge, there’s no existing or completed project that has 

accomplished the above objectives. In this research, the six objectives are accomplished 

with data-mining techniques and evolutionary algorithms developed here. The model and 

methods developed in this thesis can be extended to other industrial process problems. 

In Chapter 2, the plant influent flow at a WWTP is predicted with two data-driven 

neural networks. To satisfy the spatial and temporal characteristics of the influent flow, 
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rainfall data collected at 6 tipping buckets, radar data measured by a radar station and 

historical influent data are used as model inputs. The static MLP neural network provides 

good prediction accuracy up to 150 min ahead. To extend the time horizon of predictions, 

to 300 min, a dynamic neural network with an online corrector is proposed. 

In Chapter 3, data-mining algorithms are applied to predict total suspended solids 

(TSS) in wastewater. Numerous scenarios involving carbonaceous biochemical oxygen 

demand (CBOD) and influent flow rate are investigated to construct the TSS time-series. 

The multi-layered perceptron (MLP) model performed best among the five different data-

mining models that are derived for predicting TSS. The accuracy of the predictions is 

improved further by an iterative construction of MLP algorithm models.  

In Chapter 4, numerous models predicting carbonaceous biochemical oxygen 

demand (CBOD) are presented. The performance of individual seasonal models is found 

to be better for fall and winter seasons, when the CBOD values were high. For low 

CBOD values, the modified seasonal models are found most accurate. Predictions for up 

to five days ahead are performed.  

In Chapter 5, a data-driven approach is presented to model and optimize 

wastewater pumping process to reduce pumping energy cost. Data-mining algorithm, 

multilayer perceptron neural network, is used to build the pumping energy model. The 

optimization problem formulated by integrating the model is solved by the proposed two 

level integration algorithm to find optimal pump configurations and pump speed settings. 

Significant energy reduction is observed when the pumping station running under 

optimized optimal settings. 

To save energy while maintaining effluent quality, a data-driven approach for 

optimization of energy efficiency of the activated sludge process is presented in Chapter 

6. A dataset from a wastewater treatment plant is used to formulate the objectives of the 

model. The optimal concentrations of dissolved oxygen that would minimize energy 

consumption and effluent pollutants are determined with an evolutionary computational 
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algorithm. Three scenarios with different preference between energy savings and effluent 

quality are investigated.  

In Chapter 7, optimization of biogas production process in a wastewater treatment 

plant is presented. The process model is developed using routinely collected data 

categorized as controllable and uncontrollable variables. A multi-layer perceptron neural 

network is applied to construct the optimization model. Optimizing single variable and all 

variables are both investigated.  An evolutionary algorithm is used to solve the 

formulated problem. 

Chapter 8 presents the conclusions and future research. 
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CHAPTER 2 

SHORT-TERM FORECASTING OF INLUENT FLOW RATE 

2.1 Introduction 

The influent flow to a wastewater treatment plant (WWTP) has a significant 

impact on the energy consumption and treatment process [1]. To maintain the required 

water level in a wet well, the number of raw wastewater pumps should be arranged based 

on the quantity of coming influent flow. Optimal arrangement and scheduling of pumping 

system can greatly reduce electricity usage. The pollutants, such as total suspended solids 

(TSS) and biochemical oxygen demand (BOD) in the wastewater are also correlated to 

the influent flow [2]. The treatment process should be adjusted accordingly to the 

pollutants concentrations in the influent. For example, high BOD concentration requires 

longer aeration time and supply of more oxygen [3]. Thus, it is important to predict the 

influent flow at future time horizons in order to well manage the plant and control the 

effluent quality.  

Accurate prediction of the influent flow, however, is still a challenge in 

wastewater industry. A WWTP usually receives wastewater from municipal sewers and 

storm waters from areas around the plant [4]. The quantity of the generated wastewater or 

precipitation may vary across different areas. In fact, to account for the influent flow to a 

WWTP, spatial and temporal correlations should be considered. 

Several studies have focused on developing models to predict the influent flow [5-

10]. Hernebring et al. [11] presented an online system for short-term sewer flow forecasts 

optimizing the effects of the receiving wastewater. A more complex phenomenological 

model has been built in [12] based on one year of full-scale WWTP influent data .It 

included diurnal phenomena, a weekend effect, seasonal phenomena and holiday periods. 

Carstensen et al. [13] reported prediction results of hydraulic load for urban storm control 

of a WWTP. Three models, a simple regression model, an adaptive grey-box model and a 



www.manaraa.com

7 
 

 

complex hydrological and full dynamic wave model, represented three different levels of 

complexity and showed different ability to predict water loads one hour ahead. Though 

these models have taken into account temporal correlations of the influent flow, however, 

they have ignored the spatial feature of the influent flow.   

The wastewater processing industry has used physics-based deterministic models 

to estimate the influent flow. Online sensors have been used to provide flow information 

at sub-pumping stations. Based on the empirical data, such as the distance between the 

sub-station and the WWTP, the sewer piping size, the influent flow could be roughly 

estimated and calibrated by the historical data to improve the estimation accuracy [14]. 

Such simple models did not fully consider temporal correlations of the influent flow. In 

case of large rainfalls or lack of sensors covering large areas, the predicted influent flow 

may have carried a significant error. 

In this work, short-term prediction (300 min ahead) of the influent flow of a 

WWTP is presented. To take account of the spatial-temporal characteristics of the 

influent flow, rainfall data measured at different tipping buckets, radar reflectivity data 

covering the entire area handled by the WWTP, and the historical influent data to the 

plant are used to build the prediction models. The rainfall data provided by tipping 

buckets offers valuable precipitation measurements. Weather radar provides spatial-

temporal data covering large area including the places not covered by the tipping buckets. 

The high frequency of radar data makes them useful to forecast the rainfall several hours 

ahead. The historical influent time series data contains temporal influent information used 

to predict the influent flow.  

Neural networks (NNs) are used to build prediction models in the research 

reported in this research. Successful applications of NNs have been reported in literature 

[15-20]. Kriger and Tzoneva [21] developed a NN model to predict the chemical oxygen 

demand of the influent. A three-layer feed forward NN has been applied to the effluent 

BOD [22]. The NN models provided satisfactory prediction results.  
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The remainder of the chapter is organized as follows. Section 2.2 describes the 

data collection, preparation and preprocessing as well as the metrics used to evaluate 

accuracy of models. Section 2.3 presents a static multi-layer perceptron (MLP) neural 

network which is employed to build prediction model of the influent flow. In Section 2.4, 

a data-driven dynamic neural network is proposed to solve the time lag problem 

appearing in the models by the static MLP neural network. The neural network structure 

and the computational results are discussed.  

2.2 Data collection and processing 

2.2.1 Data cleaning 

The plant influent flow data and other data not specified are collected at the 

Wastewater Reclamation Facility (WRF), located in Des Moines, Iowa, United States. 

WRF operates a 97 million gallon per day (MGD) regional wastewater treatment plant in 

southeast Des Moines, Iowa. The peak influent flow rate can be as high as 200 MGD. 

The plant was mainly constructed in the mid 1980s to treat municipal wastewater and 

storm water from the greater Des Moines metropolitan area. The activated sludge process 

is used to biologically remove organics in the water. 

To build the influent flow prediction model of WRF, the model inputs include 

historical influent data, rainfall data and radar reflectivity data. The influent flow data is 

collected at 15-s intervals at WRF. It is preprocessed to 15-min to have the same 

frequency as the rainfall data. 

The rainfall data was measured at six tipping buckets (blue icons in Figure 2.1) in 

the vicinity of WRF (red icon in Figure 2.1). As WRF receives wastewater from a large 

area, including rainfall data in the model inputs satisfies the spatial characteristic of the 

influent flow. Figure 2.2 shows the difference of rainfall rates at these tipping buckets at 

certain times. It illustrates that the rainfall is location dependent and may be very despite 
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the proximity of the tipping buckets. It indicates the importance of rainfall data to the 

influent flow prediction model. 
 
 
 

 

 

  

 

 

 

 

 

Figure 2.1. Location of tipping buckets and WRF 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Rainfall at six tipping buckets 
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The rainfall graphs in Figure 2.2 illustrate the runoffs at several locations rather 

than completely reflect the precipitation at entire area covered by WRF. Therefore, the 

radar reflectivity data is proposed to provide additional input to for influent flow 

prediction. The NEXRAD-II radar data used in this research is from the weather station 

KDMX in Des Moines, Iowa, approximately 32 km from WRF. KDMX uses Doppler 

WSR-88D radar to collect high resolution data for each full 360 degree scan every 5-min 

with a range of 230km and a spatial resolution of about 1 km by 1 km. The radar 

reflectivity data has been collected at 1, 2, 3, and 4 km constant altitude plan position 

indication height (CAPPI). As shown in Figure 2.3, reflectivity may be quite different at 

different heights at the same scanning time. Terrain and flocks of birds may result in 

errors of radar readings. In addition, reflectivity at one height may not be able to fully 

describe the storm because it occurring at different heights. To deal with these issues, it is 

necessary to use radar reflectivity data from different CAPPIs. 

The radar reflectivity data at nine grid points surrounding each tipping bucket is 

selected and averaged with the center data to be the reflectivity for that tipping bucket. 

Null values are treated as missing values and are filled by the reflectivity at the 

surrounding gird points. The NEXRAD radar data was collected at 5-min intervals. It has 

been processed to 15-min by averaging 3 radar data reflectivity values.   

Table 2.1 summarizes the dataset used in this research. In addition to 4 historical 

influent flow inputs at 15, 30, 45 and 60 min ahead, 6 rainfall and 24 radar reflectivity 

inputs provide the temporal and spatial features into the model. The data was collected 

from January 1, 2007 through March 31, 2008. The data from January 1, 2007 through 

November 1, 2007 containing 32,697 data points is used for train neural networks. The 

remaining 11,071 data points and is used to test the performance of the built models.  
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Figure 2.3. Radar reflectivity at different CAPPI 
 
 
 

Table 2.1. The data set description  

Inputs Description Unit 
x1-x6 Rainfall at 6 tipping buckets inch 
x7-x30 Radar reflectivity at 6 tipping buckets 

at 4 CAPPI 
number 

x31-x34 Historical influent flow MGD 
 
 
 

2.2.2 Prediction accuracy metrics 

Three commonly used metrics, the mean absolute error (MAE), mean squared 

error (MSE), and correlation coefficient R2 are used to evaluate the performance of the 

prediction models (Eq. (2.1)-(2.3)). 

1

1
| |

n

i i
i

MAE f y
n =

= −∑                     (2.1) 
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where if  is the predicted value produced by the model, iy is the observed value, iy is the 
mean of the observed value, and n  represents the number of test data points.  

2.3 Modeling by static multi-layer perceptron neural 

network 

To build the influent flow prediction model, a static multi-layer perceptron (MLP) 

neural network was developed. The MLP neural network is one of the most widely used 

network topologies after its introduction 1960 [23]. It has overcome limitations of the 

single-layer perceptron to handle model nonlinearity. Prediction and classification 

applications of MLP neural networks have been reported in science and engineering [24-

28]. 

The structure of the MLP neural network used in the research reported in this 

research is shown in Figure 2.4. It is a supervised back-propagation network with three 

layers. Each layer has one or more neurons which are interconnected to each neuron of 

the previous and the next layers. The connection between two neurons is parameterized 

by a weight and a bias. Different activation functions, such as logistic, hyperbolic 

tangent, identity, sine and exponential, were selected for the hidden and output layers. 
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Figure 2.4. Structure of the MLP neural network 
 
 
 

In the MLP in Figure 2.4, the output 1y  is calculated as shown in Eq. (2.4) 

1 1 1( ( ) )o h i ij j j
j i

y f f x w b w b= + +∑ ∑                     (2.4) 

where i  denotes the ith neuron in the input layer, j  is the jth neuron in the hidden 

layer, of  and hf are the activation function for output layer and hidden layer, respectively. 

ijw  is the weight connecting the ith neuron to the jth neuron, and 1jw  is the weight 

between the jth neuron in the hidden layer to the neuron in the output layer. jb  and 1b  are 

the bias for neuron j and output neuron.                   

The weight is calculated from Eq. (2.5) during the training process so as to 

minimize the target output  

2
1

1
( ) ( ( ) ( ))

2 k

n T n y nε = −∑                     (2.5) 

whereε is the mean of square error, n denotes the nth data point, k is the kth output 

neuron (k equals to one in this work), T represents the targeted output value. 
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In total 200 MLP neural networks were trained to get a generalized net structure. 

The number of neurons in hidden layer varied from 3 to 30. To improve the convergence 

speed of the training process, BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm [29] 

was used. The weights were randomly initialized between -1 and 1 and iteratively 

improved by minimizing the mean of square error with iterations. The algorithm would 

stop when the error was smaller than the set threshold or the number of maximum 

number of iterations was reached.  

The influent flow prediction model at current time t was firstly built. The dataset 

described in Section 2.2 was used to train and test the MLP neural networks. The best 

MLP had 25 neurons in the hidden layer with the logistic hidden activation function and 

the exponential output activation function. The calculated MAE, MSE and correlation 

coefficient were 1.09 MGD, 4.21 MGD2, and 0.988, respectively. These metrics indicate 

that the prediction model is accurate. The first 300 observed and predicted influent flow 

values from the test dataset are shown in Figure 2.5. Most predicted values are very close 

to the observed ones, and the predicted influent flow follows the trend of the observed 

flow rate.  

MLP neural networks models were also built at t + 15 min, t + 30 min, t + 60 min, 

t + 90 min, t + 120 min, t + 150 min, and t + 180 min. As shown in Figure 2.6, the 

predicted influent flow is close to the observed value, and the predicted trend is the same 

as the observed one. However, a small time lag between the predicted and observed 

influent flow appears. The lag increases fast and can be clearly observed in Figure 2.7 

which predicts the influent flow time t + 180 min ahead.  
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Figure 2.5. Predicted and actual influent flow at current time t 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6. Predicted and actual influent flow at time t + 30 min. 
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Figure 2.7. Predicted and actual influent flow at time t + 180 min 
 
 
 

Table 2.2. Prediction accuracy 

Prediction 
horizon 

MAE (%) MSE(%) 
Correlation 
coefficient 

t 1.09 4.21 0.988 
t + 15 1.48 5.83 0.983 
t + 30 1.89 8.20 0.976 
t + 60 2.75 14.59 0.958 
t + 90 3.61 22.95 0.934 
t + 120 4.46 33.21 0.905 
t + 150 5.26 44.88 0.872 
t + 180 6.02 57.39 0.836 
 
 
 

Table 2.2 summarizes the accuracy results for predictions at the current time t 

through t + 180 min. The prediction accuracy decreases with increase of the time horizon. 

The MAE and MSE increase fast after t + 30 min, with the correlation decreasing as well. 
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The prediction models for horizons smaller than t + 150 min have acceptable accuracy if 

the threshold of correlation coefficient is set as 85%. Even the trend can be well 

predicted, the time lag is too large to provide useful real-time influent flow information. 

2.4 Modeling by improved dynamic neural network 

The computational results in Section 3 indicate that the static MLP neural network 

is not able to capture the dynamics in the dataset at long time horizons. To deal with this 

issue and improve prediction accuracy, a dynamic neural network with online corrector 

was proposed and tested. Successful applications of the dynamic neural network have 

been reported in literature [30-32]. A dynamic neural network involves a memory and a 

predictor. As the memory captures the past time series information, it can be used to learn 

the temporal patterns of the time series by the predictor. This research used focused time-

delay neural network (FTDNN) as the predictor [33]. The basic network is MLP network 

as it can well handle the spatial data. The dynamics appears at the input layer of the 

network to process the temporal information. 

To address the time lag issue caused by the static MLP neural network, an online 

corrector is proposed. The structure of the final dynamic neural network is shown in 

Figure 2.8. The details of FTDNN are covered in the literature, e.g., [34]. The inputs of 

the prediction model included four past values of influent flow (as memory values), radar 

reflectivity, rainfall, and the online corrector( )e t (Eq. 2.6) at current time t.  

( ) | ( ) ( ) |p oe t y t y t= −                     (2.6) 

where ( )py t and ( )oy t are the predicted and actual influent flow at current time t. 

In fact, the online corrector provides the time lag information back to the input layer to 

calibrate the prediction results during the training iterations. 
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Figure 2.8. Structure of the dynamic neural network 
 
 
 

The approach presented in in Section 2.3 was applied to train the dynamic neural 

network. As shown in Figure 2.9, the influent flow is well predicted at time t +30. There 

is a slight time lag. Figure 2.10 shows the predicted influent flow and the observed values 

at time t + 180 min for the dynamic and the static networks. It clearly shows that the time 

lag of the predictions by dynamic neural network is much smaller than the time lag of the 

prediction by static MLP neural network. MAE, MSE and correlation coefficient of two 

neural networks are illustrated in Figure 2.11, 2.12 and 2.13. The built prediction model 

by dynamic neural network outperforms the model by static MLP neural network. Its 

MAE and MSE increase slowly with longer time horizons. The correlation coefficient 

decreases slowly and is still acceptable at time t + 300 min (R2 > 0.85).  
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Figure 2.9. Predicted and actual influent flow at time t + 30 min  
 
 
 

 

 
Figure 2.10. Predicted and actual influent flow at time t + 180 min for two models 
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Figure 2.11. MAE of the prediction models by two neural networks 

 
 
 
 

 
Figure 2.12. MSE of the prediction models by two neural networks 
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Figure 2.13. Correlation coefficient of the prediction models by two neural networks 

 
 
 

The results indicate that dynamic neural network is capable of modeling the 

influent flow. Static MLP neural network is effective in handling complex non-linear 

relationships rather than temporal time series. On the other hand, dynamic neural network 

is suitable for temporal data processing. The online corrector provides additional time 

series information as an input to correct the time lag generated in the model. The 

accuracy gain comes at a cost of additional computation time needed to construct the 

dynamic neural network. 

As knowing the future values of influent flow is important for management of 

WWTPs, the 300 min ahead predictions provided by a dynamic neural network offer 

ample time to schedule the pumping system and adjust the treatment process parameters. 

However, the 150 min ahead predictions offered by the static MLP neural network are 

acceptable in lower precipitation seasons (for example, spring and winter) by saving 

computation time. 
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CHAPTER 3 

PREDICTING OF THE TOTOAL SUSPENDED SOLIDS IN 

WASTEWATER 

3.1 Introduction 

Total suspended solids (TSS) are considered to be one of the major pollutants that 

contributes to the deterioration of water quality, contributing to higher costs for water 

treatment, decreases in fish resources, and the general aesthetics of the water [35]. The 

activities associated with wastewater treatment include control of water quality, 

protection of the shoreline, and identification of economic life of protective structures. 

Predicting suspended sediments is important in controlling the quality of waste water. 

TSS is an important parameter, because excess TSS depletes the dissolved oxygen (DO) 

in the effluent water. Thus, it is imperative to know the values of influent TSS at future 

time horizons in order to maintain the desired characteristics of the effluent.  

Industrial facilities usually measure the water quality parameters of their influents 

two or three times a week, and the measurements include CBOD, pH, and TSS [36, 37]. 

Thus, the infrequently recorded data must be modified to make it suitable for time-series 

analysis. Sufficient associated parameters must be available to develop accurate TSS 

prediction models. Wastewater treatment involves complex physical, chemical, and 

biological processes that cannot be accurately represented in paramedic models. 

Understanding the relationships among the parameters of the wastewater treatment 

process can be accomplished by mining the historical data. A detailed description of 

various waste water treatment plant (WWTP) modeling approaches is described in [38]. 

Their review work is mainly focused on application of white-box modeling, and artificial 

intelligence to capture the behavior of numerous WWTP processes. Poch et al. [39] 

developed an environmental decision support system (EDSS) to build real world waste 
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water treatment processes. In another research, Rivas et al. [40] utilized mathematical 

programming approach to identify the WWTP design parameters.      

Data-mining algorithms are useful in wastewater research. Examples of data-

mining applications reported in the literature include the following: (1) prediction of the 

inlet and outlet biochemical oxygen demand (BOD) using multi-layered perceptrons 

(MLPs), and function-linked, neural networks (FNNs); (2) modeling the impact of the 

biological treatment process with time-delay neural networks (TDNN) [41]; (3) 

predicting future values of influent flow rate using a k-step predictor [42]; (4) estimation 

of flow patterns using auto-regressive with exogenous input (ARX) filters; (5) clustering 

based step-wise process estimation; and (5) rapid performance evaluation of WWTP 

using artificial neural network.        

In the research reported in this chapter, the influent flow rate and the influent 

CBOD were used as inputs to estimate TSS. Due to the limitations of the industrial data-

acquisition system, the TSS values are recorded only two or three times per week. The 

data must be consistent in order to develop time-series prediction models. Thus, we 

established two goals for our research goals: (1) to construct TSS time series using 

influent flow rate and influent CBOD as inputs and (2) to develop models that can predict 

TSS using the TSS values recorded in the past.  

The chapter is organized as follows. Section 3.2 provides details of the dataset 

used in the research. In Section 3.3, the TSS time-series models are discussed. In Section 

3.4, data-mining models are constructed for predicting TSS. The computational results 

are discussed in Section 3.5.  

3.2 Data preparation 

The influent flow rate is calculated at 15-min intervals, whereas influent CBOD 

and TSS are measured only two or three times per week based on the daily concentration 

values. A five-year data record, collected from 1/1/2005 to 12/31/2010, was available for 
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the research reported in this research. To visualize the relationship between the TSS 

(output) and the influent flow rate and the influent CBOD as inputs, scatter-point 

diagrams are presented in Figs. 3.1(a)-(b). The low values of the coefficient of 

determination (r2) shown in the figures indicate a weak linear correlation between the 

input and output variables (parameters).  
 
 
  

 
(a) 

 

 
                                                (b) 

 
Figure 3.1. Relationship between TSS and input parameters: (a) influent CBOD, 

(b) influent flow rate (daily average values) 
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Thus, linear regression models are not suitable for predicting TSS using either the 

influent flow rate or the CBOD as inputs. A non-linear correlation measure, namely, the 

Spearman correlation coefficient, was computed (Table 3.1). The results provided in 

Table 3.1 suggest a significant non-linear correlation between the input and output 

parameters. Based on the non-linear relationship between the influent flow rate and 

CBOD and TSS, non-parametric approaches were explored.  
 
 
 

Table 3.1. Spearman correlation coefficients 

 TSS (mg/l) 

Influent CBOD (mg/l) 0.5019 

Influent flow rate (MGD) -0.4087 
 
 
 

To develop accurate prediction models, data outliers must be removed. Figure 3.2 

presents the box plot of TSS values with the outliers identified. In general, the TSS 

values remain between 32 mg/l and 530 mg/l). However, the outlier data points occur due 

to errors in the measurements.  

A normal, two-sided, outlier-detection approach was used. In two-sided outlier 

detection, values that exceed +3 σ and values that are smaller than -3 σ are considered to 

be outliers. Almost 4% of the data points have been determined to be outliers and 

removed from the analysis. Figure 3.3 provides the box plot of TSS after the outliers are 

removed. 
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Figure 3.2. Box plot of TSS values 

 
 
 

 

Figure 3.3. Distribution of TSS values after removing outliers  

 
 
 

In the next section, methods are discussed for constructing time-series data for 

TSS.  
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3.3 Construction of time-series data for TSS 

Models that can approximately determine TSS values have been developed using 

influent flow rate and influent CBOD as input parameters. First, the most relevant 

parameters are selected to obtain robust models. It is also essential for the reduction of 

the dimensionality of the data. Approaches for selecting parameters, such as the boosting-

tree algorithm, correlation coefficient, and principal component analysis, are often used 

for this purpose.   

The frequency of the measurement of output TSS is once per day, whereas the 

flow rate of the influent is recorded every 15 minutes. Considering the influent flow rate 

recorded in a day, the input data-dimension becomes 96. In the first approach for 

reducing the dimensionality of the data, the boosting-tree parameter selection approach 

and the correlation coefficient approach were used to identify the best time of day for 

estimating the values of TSS. The approach uses the total squared error computed at each 

split of the input parameters. The parameter with the best split is assigned a value of 1, 

and the less-preferred parameters are assigned values smaller than 1. The boosting-tree 

algorithm computes the relative influence of the parameters using Eq. (3.1).  
 

( ) ( )jvITJ t

L

t

tj ==∑
−

=

1
~~

1

1

22

                                     (3.1)
 

where ( )TJ j
2~

 is the relative significance of parameter j, i is the index of the tree, vt 

is the splitting feature associated with node t, L is the number of terminal nodes in the 

tree, and 
2~

tI is the improvement of the squared error.   

The Spearman correlation coefficient (Eq. (3.2)) reflects the non-linear correlation 

between the input and output variables [43]. It is a form of the Pearson coefficient with 

the data converted to rankings.  
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where y is the predictor, x is the input variable, and n is the total number of 

observations. The boosting-tree algorithm ranks the parameter in the range 0 to 1, 

whereas the correlation coefficients of the parameters can be in the range of -1 to +1. 

Figure 3.4 provides the ranking of the parameters generated by the boosting-tree 

algorithm and the Spearman correlation coefficient (absolute value). Both metrics point 

to the significance of the flow rate of the influent in the time window from 12:00 A.M. to 

5:15 A.M.   
 
 
 

 

Figure 3.4. Temporal significance of influent flow rate on the TSS in the influent  

 
 
 

In the second approach, a principal component analysis (PCA) was used to reduce 

the dimensionality of the dataset. In PCA, the data undergo an orthogonal, linear 

transformation  to a new coordinate system so that the greatest variance by any projection 

of the data is realized on the first coordinate (called the first principal component), the 

second greatest variance on the second coordinate, and so on [44].  
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Table 3.2 presents the five principal components when applied to the 96 

dimensional dataset. With an aim to retain 95% variability of the original dataset, two 

principal components (i.e., PC1 and PC2 were selected). Influent recorded at 2:00 P.M. - 

2:30 P.M., 3:15 P.M., and 5:45 P.M. contributed the most to the first principal component 

(i.e., PC1).   
 
 

Table 3.2. Parameters of the principal component analysis (PCA) 

Principal 
Component 

Eigenvalue Variance 
Cumulative 
Variance 

Coefficient (Parameter) 

PC1* 88.68661 0.92382 0.92382 

0.104 (2:15 PM) + 0.104 
(2:00 PM) + 0.104 (2:30 PM) 
+ 0.104 (3:15 PM) + 0.104 

(5:45 PM) 

PC2* 3.23016 0.03365 0.95747 

-0.144 (1:30 AM) - 0.144 
(1:45 AM) - 0.143 (1:15 AM) 
+ 0.143 (11:00 PM) + 0.143 

(10:15 PM) 

PC3 1.5456 0.0161 0.97357 

-0.188 (11:15 AM) - 0.184 
(11:30 AM)-0.183 (11:00 
AM)- 0.18 (10:45 AM) - 

0.179 (10:30 AM) 

PC4 0.655 0.00683 0.9804 

0.19 (11:30 PM) + 0.185 
(11:45 PM) + 0.183 (11:15 
PM) + 0.176 (11:00 PM) + 

0.174 (10:45 PM) 

PC5 0.374 0.0039 0.9843 

-0.426 (7:45 AM) - 0.423 
(7:30 AM) -0.327 (8:00 AM) 

- 0.212 (7:15 AM) - 0.162 
(8:15 AM) 

* Selected PCs 
 
 
 
Based on the number of input parameters, data frequency, and parameter 

selection, five different scenarios were investigated and reported in this research (Table 

3.3). 
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Table 3.3. Models for estimating influent TSS 

Scenario 
Number 

Input Parameter (Frequency) 
No. of Input 
Parameters 

1 CBOD (daily average) 1 

2 
Influent flow rate, influent CBOD (daily 

average) 
2 

3 Influent flow rate (15 min) 96 

4 

Influent flow rate (15 min, boosting tree 
ranking > = 0.9, and absolute correlation > = 0.4) 22 

5 Influent flow rate (15 min, PC1, PC2) 2 

 
 
 

In this chapter, neural networks (NNs) are employed to model the data scenarios 

listed in Table 3.4. Due to the complex, non-linear behavior of the data used in modeling, 

500 neural networks were trained by varying the number of hidden units and activation 

functions. The number of hidden layers was 1, whereas the number of neurons in a 

hidden layer varied from 5 to 25. Five different activation functions, i.e., ‘logistic,’ 

‘tanh,’ ‘sigmoid,’ ‘exponential,’ and ‘identity,’ were used. For each of the five scenarios 

mentioned in Table 4, two-thirds of the data were used to derive the model, whereas the 

remaining one-third of the data was used for testing. Table 3.4 summarizes the testing 

results obtained for the five scenarios.   

While most of the data models discussed in this research have rather high error 

rates, the results obtained in Scenario 4 are promising. The reported results indicate the 

significance of high-frequency data and the appropriate selection of parameters in 

improving the accuracy of the predictions. Based on the results presented in Table 3.4, 

Scenario 4 was used to construct the time series for TSS. Figure 3.5 compares the actual 
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and predicted values of TSS using the MLP model of Scenario 4. The results in Figure 

3.5 indicate a high coefficient of determination (r2 = 0.803).  
 
 
 

Table 3.4. Models for estimating the TSS in the influent  

Function 
Approximator 

MLP 
Structure 

Hidden 
Activation 

Output 
Activation MAE 

MRE 
(%) 

Scenario 1 MLP 1-5-1 Tanh  Identity 69.29 24.08% 
Scenario 2 MLP 2-25-1 Tanh  Identity 64.47 21.49% 

Scenario 3 
MLP 96-15-1 Identity Exponential 

64.69 33.10% 

Scenario 4 
MLP 22-16-

1 
Tanh  Identity 

28.11 13.34% 

Scenario 5 MLP 2-24-1 Tanh Tanh 60.88 31.38% 
 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Comparison of the actual and the predicted values of TSS (Scenario 4)  

 

The model in Scenario 4 predicted the values of TSS with 86.66% accuracy. 

These values are used to fill almost 60% of the data needed to construct a five-year TSS 

time series for the period from January 2005 through December 2010. Figure 3.6 presents 
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the run chart of the actual and predicted values of TSS values over a period of five years. 

The TSS data displayed in Figure 6 were used to build the time-series prediction model 

discussed in the next section.   
 
 
 

Figure 3.6. Predicted five-year time series for TSS in influent (data from January 

1, 2005 through December 31, 2010) 

 
 
 

3.4 Predicting the TSS 

Considering the univariate nature of the data, the past recorded values of TSS 

were used as the input to predict the current and future values of TSS. Such past values of 

the parameters are known as the memory values of the parameters. Memory values have 

been used extensively to improve the accuracy of the predictions of various models 

developed for different applications [45, 46]. The values of TSS over the past 10 days 

were used as input parameters in the expression shown in (3.5):  
 



www.manaraa.com

33 
 

 

 








−−−−−
−−−−−

=
)10(),9(),8(),7(),6(

)5(),4(),3(),2(),(
)(ˆ

TtTSSTtTSSTtTSSTtTSSTtTSS

TtTSSTtTSSTtTSSTtTSSTtTSS
ftSST

     (3.5) 

The autocorrelation and the boosting-tree algorithm were used to rank the 10 

memory parameters. The coefficients produced by the two approaches reflect a similar 

ranking of the input parameters (Figure 3.7). As anticipated, the immediate past value is 

the best predictor, but the values recorded a week in the past are more significant than the 

values recorded two or three days in the past. The ranking of parameters is expressed in 

Eq. (3.6).  

           

[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ])4()10()3()5()9(
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ζζζζζ
ζζζζζ

        

(3.6) 

where ς[.] is the significance of the parameter.   

The five best predictors from Eq. (3.6) were selected to develop the model for 

predicting day-ahead values of TSS. Descriptions of the selected data-mining algorithms 

for model construction are provided in the next section.  
 
 
 

 

 

Figure 3.7. Ranking of memory parameters used to predict future values of TSS 
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3.4.1. Algorithm selection 

Five data-mining algorithms, i.e., the k-nearest neighbors (k-NN) ; multi-variate 

adaptive regression spline (MARS); neural network (NN); support vector machine 

(SVM) ; and random forest (RF)  algorithms, were considered to predict future values of 

TSS. A back-propagation algorithm determines the best fit NN. SVM constructs a set of 

hyper planes in high-dimensional space, which can be used for classification and 

regression. RF is an ensemble learning method in which multiple trees are generated. It 

selects n input parameters randomly to split the tree nodes. MARS is a non-parametric 

procedure for regression analysis. It constructs the functional relationship between input 

and output variables from a set of coefficients and basis functions, all driven by 

regression data. The k-NN approach is an instance-based learning method in which the 

function is approximated locally. For regression models, k-NN output is the average of 

the k-nearest neighbors’ outcomes.  

An algorithm predicting day-ahead values of TSS with minimum error was 

selected to construct models for seven-day-ahead predictions. NN was trained with 100 

multi-layered perceptron (MLPs) by varying hidden, output activation functions and the 

number of neurons in the hidden layers. Activation functions, e.g., ‘logistic,’ ‘tanh,’ 

‘sigmoid,’ ‘exponential,’ and ‘identity’ were considered for both hidden and output 

nodes. A single hidden-layer was used in this network, while the number of neurons 

varied from 5 to 25.  SVM was trained using four different kernels, i.e., RBF, 

polynomial, linear, and sigmoid kernels. The number of nearest neighbors in the k-NN 

algorithm was varied from 2 to 10 in training, while the Euclidean distance was used as a 

distance metric. MARS was trained on a number of basis functions, with the maximum 

equal to 500. RF was trained by setting the number of random predictors to three, while 

the maximum number of trees was 500. Table 3.5 presents the 10-fold, cross-validation 

result obtained using five data-mining algorithms.  
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Table 3.5. Day-ahead prediction of TSS in influent with data-mining algorithms 

Algorithm MAE MRE (%) 

 k-NN (k = 10) 62.15 26.46% 
RF 52.19 21.66% 
NN 38.88 16.15% 

MARS 44.59 18.29% 
SVM 61.36 26.10% 

 
 
 

Based on the results in Table 3.5, the NN algorithm (MLP 5-24-1, hidden 

activation: tanh, output activation: exponential) outperforms the other algorithms by 

providing the lowest MAE and MRE errors. Figure 3.8 illustrates the run chart of the 

actual and MLP-predicted TSS values. The results in Figure 3.8 show that the MLP 

algorithm is the most accurate predictor of future values of TSS.   
 
 
 

 

 Figure 3.8. Comparison of the actual and MLP model-predicted values of TSS  
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3.4.2 Iterative learning 

Even though the results produced by MLPs (Table 3.6) were promising, the 

prediction error can be reduced further by updating the prediction model iteratively for 

the next time-step prediction. A sliding window was utilized with NN models to predict 

future values of TSS iteratively. The value of TSS predicted by NN model at the current 

time (TSS(t)) was used as the input to predict the values of TSS at some future time 

(TSS( t + 1)). The least significant parameter was replaced with the predicted output to 

keep the dimensions of the input data constant. Figure 3.9 illustrates the concept of 

iterative learning. After each iteration, the least-significant memory parameter was 

replaced with the parameter predicted in the previous iteration. Thus, for predicting the 

values of TSS two days ahead, the one-day ahead predicted value of TSS was used as an 

input, and this process was repeated until it was ended.  
 
 
 
   

SS(t)T̂

5)-nSS(tT +ˆ 1)-nSS(tT +ˆ

 

Figure 3.9. Iterative learning procedure  
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In this research, seven consecutive memory parameters, i.e., {TSS (t-7), TSS (t-

6), TSS (t-5), TSS (t-4), TSS (t-3), TSS (t-2), and TSS (t-1)}, were used as inputs to 

predict the current value {TSS (t)}. Seven MLP models were constructed iteratively from 

the training data using 10-fold cross validations. Table 3.6 presents the results obtained 

by the MLP at each learning step.  
 
 
 

Table 3.6. MLP learning results 

Learning 
Steps 
[days] 

MAE MRE (%) 
MLP Structure Hidden 

Activation 
Output 

Activation 

1 44.04 18.54 MLP 5-12-1 Tanh Exponential 
2 46.15 19.19 MLP 5-21-1 Identity Exponential 
3 46.80 19.60 MLP 5-3-1 Logistic  Identity 
4 47.05 23.14 MLP 5-25-1 Exponential  Identity 
5 49.99 23.82 MLP 5-25-1 Exponential  Exponential 
6 51.22 25.74 MLP 5-13-1 Tanh Tanh 
7 50.76 26.58 MLP 5-2-51 Identity Exponential 

 
 
 

In the next section, the best data-mining models are used to predict the future 

values of TSS. The prediction results obtained using basic and iterative learning are 

compared.  

3.5 Computational results 

The values of TSS were predicted up to seven days ahead with the MLP models 

developed in Section 4 (Table 3.6). Table 8 presents the results obtained using MLP at 

seven time steps, spaced at one-day intervals. MAE was found to be in the range of 41-55 

mg/l, whereas the MRE ranges from 22% - 32% for seven-day prediction. The results in 

Table 3.7 indicate that the week-ahead values of TSS can be predicted with almost 68% 

accuracy.  
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Table 3.7. TSS prediction results with NN (MLP 5-24-1, hidden 
activation function: Tanh, output activation: exponential algorithm) 

 

Time Steps [days] MAE MRE (%) 

t +1 41.05 22.02 
t +2 44.76 24.18 
t +3 48.55 26.32 
t +4 50.30 27.01 
t +5 49.66 27.20 
t +6 53.85 28.49 
t +7 55.24 31.34 

 
 
 

In this section, the models constructed by seven MLP algorithms (Table 3.6) are 

applied iteratively to the test data. Table 3.8 provides the MAE and MRE statistics for the 

test dataset used for prediction. The computational results in Table 3.8 indicate that TSS 

can be predicted a week ahead with accuracy up to 73%, with the MAE in the range of 

40.95 - 52.30 mg/l and the MRE in the range of 21.85% - 27.55%.    

Figure 3.10 illustrates the error improvement over time for the dynamic learning 

scheme. By applying the iterative NN learning scheme, a 5% improvement in the MRE 

and a 4% improvement in the MAE were obtained. The results shown in Figure 3.10 

indicate that the iterative learning scheme can be useful in making long-term predictions.  
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Table 3.8. Results of the prediction of TSS using MLP algorithms 
(dynamic learning scheme) 

Time Steps[days] MAE MRE (%) 

t +1 40.95 21.85 
t +2 44.32 24.04 
t +3 45.95 24.32 
t +4 47.70 25.88 
t +5 49.38 27.01 
t +6 49.66 27.20 
t +7 52.30 27.55 

 

 
 
 
 

 

Figure 3.10. Error improvement over different time steps   
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CHAPTER 4 

PREDICTING OF CBOD IN WASTEWATER 

4.1 Introduction 

Wastewater treatment plants involve several processes for converting raw influent 

into an efficient effluent [47]. The unsteady flow rate of influent wastewater calls for 

efficient control solutions. From measurement of the concentration of influent waste, 

useful information for the control can be obtained. In the literature, biochemical oxygen 

demand (BOD), chemical oxygen demand (COD), potential of hydrogen (pH), and total 

suspended solids (TSS) are widely used indicators of wastewater quality [48-51].  

In practice, the influent water quality is not measured with online sensors [52, 53]. 

CBOD, pH, and TSS are usually measured 2 or 3 times a week. This time span is too 

long for real-time control purposes [54, 55]. Monitoring the waste concentration has been 

considered in the literature as a way to address the influent quality issue. Various 

deterministic models are presented in [56, 57]. Holmberg [58] presented a method to 

estimate the influent BOD concentration based on a simplified dynamic model. Onnerth 

et al. [59] proposed a model-based software sensor to identify process relations, and 

implemented on-line control strategies. Their experimental results have shown a 30% 

reduction of energy use.   

An alternative way to estimate influent quality is by using a data-driven approach. 

Wastewater treatment plants record the water quality parameters on a regular basis. Using 

the existing data, the relationship between the waste concentration and the parameters, 

such as influent flow, which is usually measured continuously, could be identified by 

data-mining algorithms. Over the past few years, data mining has been successfully 

deployed in business and industrial [60], engineering [61], and science applications, and 

has been proven to provide useful results. Related applications of data mining include 

analysis of the pollution level in a wastewater treatment plant emissary [62], monitoring 
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an acidic chromic wastewater treatment plant using self-organizing maps, and 

discovering hidden patterns in wastewater treatment data with induction rule techniques 

[63].  

In this chapter, CBOD is used as a metric to represent the quality of the 

wastewater. Data-mining- and statistics-based approaches are employed to identify the 

relationship between the influent flow rate and CBOD. Four data-mining algorithms are 

used to predict the CBOD on daily data.  

4.2 Data description and statistical analysis 

The influent rate is calculated at 15 min intervals, whereas CBOD, pH, and TSS 

are calculated 2-3 times a week based on daily concentration values.  A five-year record 

of long data from 1/4/2005 to 12/29/2010 was available for the research reported in this 

research. Fig. 4.1(a)-(d) presents the histograms of four parameters. The data suggests 

that the influent rate is concentrated in the range of (20-100), pH in the range of (7.1-7.5), 

CBOD in the range of (100-400 mg/l), and TSS in the range of (100-400 mg/l). To 

visualize the relationship between the input influent rate and various outputs, scatter point 

diagrams are presented in Fig. 4.2(a)-(c). It can be observed that CBOD and TSS 

decrease exponentially as the influent rate increases, whereas pH does not suggest any 

direct relationship to the influent rate. The correlation coefficients are provided in Table 

4.1. Based on the correlation coefficients, models predicting CBOD are described in the 

next section.  
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Figure 4.1. Histogram of input data (a) CBOD, (b) TSS, (c) pH, and (d) influent flow rate 
 
 
 
 

 
Table 4.1. Correlation coefficients 

 Influent flow rate 

CBOD -0.653 
TSS -0.235 
pH 0.32 
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Figure 4.2. Relationship between influent flow rate (input) and output, (a) CBOD, (b) 
TSS, and (c) pH 

 
 
 

4.3 Modeling and solution methodology 

This section presents a three-step methodology to predict CBOD values of 

wastewater (see Fig. 4.3). In Step 1, the time-stamped data is integrated to ensure that 

both input and output data are of the same frequency. In Step 2, the missing data is 

addressed by approximating the relationship between influent flow rate and output. In 

Step 3, data-mining algorithms are employed to construct the models predicting CBOD. 

Owing to the seasonal effects of the CBOD, models for separate seasons are also 

analyzed.  
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Figure 4.3. The tree-step modeling methodology 
 
 
 
 

Due to the limitations of the measurements, the frequency of the data varied. 

Here, the influent rate data is more frequent than the CBOD data. Models based on daily 

average and 15-min influent rate are analyzed. The time-stamp alignment of data ensures 

the consistency of the frequency of the data.  

4.3.1Filling in missing data  

Though the frequency of the output data is 24 h, some data has not been recorded 

on a daily basis. This has created gaps in the dataset, which needed to be addressed 

before a time-based prediction could be performed. In this research, both univariate daily 

average influent rate data and multivariate (15 min influent) data is analyzed to fill in the 

missing CBOD values. The aim is to derive a model that generates CBOD values using 

influent flow rate as input. For the univariate data, curve fitting [64] and genetic 

programming is used, whereas, for the multivariate data, genetic programming and neural 

networks are used.  

Curve fitting identifies the best fitting curve or the corresponding equation given a 

series of data points. The least error is often used to measure this fit. In the research 

reported in this research, the data plot of the influent rate and CBOD indicates an 
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exponential function (see Fig. 4.1). Therefore, the original data is fitted with an 

exponential decay function. The ability of genetic programming to obtain the exact 

mathematical equations from the input data has attracted the attention of many 

researchers. In this research, a GP is utilized to identify the mathematical relationship 

between the influent rate and CBOD. The operators, namely ‘multiplication’, 

‘subtraction’, ‘divide’, ‘addition’, ‘constant’, ‘exponential’, ‘sine’, ‘cosine’, ‘square root’, 

‘logistic’, and ‘gaussian’, constitutes the building blocks of function operators. Neural 

networks (NNs) are the complex structures of neurons that work together to solve a 

specific problem. The network structure consists of input layers, hidden layers, an output 

layer and hidden layers to generate the output. NNs are well suited to model non-linear 

data. As shown in Fig. 4.2(a), the data is highly non-linear; therefore, 100 NNs are 

trained to obtain the best NN structure. The number of hidden layers is kept at 1, whereas 

the number of neurons in a hidden layer varies from 5 to 25. Five different activation 

functions – ‘logistic’, ‘tanh’, ‘sigmoid’, ‘exponential’, and ‘identity’ – are employed. 

NNs are applied on three different datasets with different numbers of input parameters.   

For both univariate and multivariate data sets, two-thirds of the input 

preprocessed data is used to derive the model, whereas the remaining one-third of the 

data is used for testing. The distributions of the training and testing instances are 

identical. More specifically, the initial data is stratified into 3 folds, whereas the first 2-

folds of data are used for training, and the remaining 1-fold is used for testing.  

In the research reported in the research influent rates collected at 15-min intervals 

is used. Therefore, the multivariate dataset has 96 (4×24) inputs. The 15-min data is 

combined with the CBOD data measured daily. The higher frequency (15-min) data 

improves prediction accuracy of CBOD.  The number of inputs needs to be reduced to 

improve prediction accuracy. Two different approaches of data dimensionality reduction 

are used. In the first approach, a correlation coefficient between influent flow rate and 

CBOD is used to identify the best time of the day for estimating CBOD (Fig.4.4) (Hall 
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1998). The correlation coefficients follow different patterns through the day. A higher 

correlation value is obtained in the time period from 4:00 to 9:00 pm. Thus, using the 

correlation coefficient value, the initial 96 dimensions of data are reduced to 20.  
 
 
 

 
Figure 4.4. Correlation coefficient between influent flow rate and CBOD 

 
 
 

In the second approach, two data-mining algorithms – the boosting tree and the 

Wrapper with genetic search – are used. Boosting tree ranks the parameters based on the 

sum of the squared error computed at each split of the input parameter [65]. The average 

statistic is calculated for all splits. The parameter with the best split is assigned a value of 

1, and so on. Wrapper is a supervised learning approach that uses genetic search to select 

the relevant parameters by performing 10-fold cross validation [66]. Table 4.2 provides 

the 10 best input parameters obtained using the boosting tree and the Wrapper genetic 

search algorithms. Overall, 18 distinct input parameters are obtained. 
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Table 4.2. Elected parameters using data-mining algorithms 

Boosting tree Wrapper genetic search 
Parameter Importance Parameter Importance 

Influent6:15 PM 100 Influent12:00 AM 100 
Influent7:45 PM 99 Influent10:15 AM 60 
Influent6:45 PM 99 Influent04:00 PM 60 
Influent6:30 PM 98 Influent04:15 PM 60 
Influent7:15 PM 98 Influent10:00 AM 40 
Influent7:00 PM 97 Influent12:15 PM 40 
Influent7:30 PM 97 Influent01:30 PM 40 
Influent4:30 PM 97 Influent04:30 PM 40 
Influent8:00 PM 97 Influent08:45 PM 40 
Influent4:15 PM 96 Influent12:15 AM 20 

 
 
 

The equations (4.1)-(4.4) represent the approximating functions obtained with 

curve fitting and genetic programming (GP) algorithms based on the univariate and 

multivariate influent rate data. The population size of GP is set to 64, whereas the 

crossover and mutation rate are 0.8 and 0.01, respectively.  
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Subscripts 1-4 in the CBOD equations (4.1)-(4.4) represent a modeling approach; 

namely, curve fitting, GP with univariate data, multivariate GP with correlation 

coefficient, and multivariate GP with a data-mining algorithm, respectively. In equation 

(4.1), the optimal values of a and b are 492.51 and 0.0113, respectively. The influentavg in 

equation (4.2) is the daily average influent rate computed for each 15-min interval; 

whereas, in equations (4.3)-(4.4), the influent flow rate recorded at the specific time of 

day is indicated by the subscript.  

Table 4.3 presents the results produced by various function approximators. The 

NN-model built according to the input parameters determined by the correlation approach 

outperformed all other approaches (it has the smallest MRE). The results in Table 4.3 

indicate that the models built from the multivariate data yielded smaller error than those 

from the univariate data.  
 
 
 

Table 4.3. Test results produced by different function approximators 

Function 
approximator 

Description 
No. of 
input 
parameters 

MAE 
MRE 
(%) 

Accuracy 
(%) 

  CBOD1 Curve fitting (exponential 
decay) 

01 51.86 29.21 70.78 

  CBOD2 GP-univariate 01 58.65 30.98 69.00 
  CBOD3 GP-multivariate 

(correlation-based) 
21 80.32 32.14 67.85 

  CBOD4 GP-multivariate (data-
mining-based) 

18 80.24 31.93 68.06 

*CBOD5 NN-multivariate 
(correlation-based) 

21 47.32 26.15 73.85 

  CBOD6 NN-multivariate (data-
mining-based) 

18 49.44 27.32 72.67 

  CBOD7 NN-multivariate (all 
parameters) 

96 60.32 30.15 69.85 

*Best function approximator  
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The analysis indicates that the NN (data-mining-based) and NN (correlation-

based) approaches achieved an accuracy of over 70%. The best function approximator, 

CBOD5, is used to fill in the missed data in the CBOD time series. Fig. 4.5 shows the run 

chart of the observed and predicted values from the CBOD5 model.  
 
 
 

 

 
Figure 4.5. Run chart of the actual and predicted CBOD values 

 
 
 

Fig. 4.6 (a)-(b) presents the original five-year CBOD data series (data with gaps), 

and CBOD data series with the gaps filled. The run chart shown in Fig. 4.6(b) is 

consistent with that of Fig. 4.6(a).   

In the next section, the prediction of CBOD values at future time horizons with 

data-mining models is discussed.  
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(a) 

 
(b) 

 
Figure 4.6. Time-series plot of CBOD: (a) Original data with gaps, (b) Data with filled 

gaps 
 
 
 

4.3.2. Algorithm selection and learning 

The resulting processed data (Fig. 4.6(b)) is used for predicting CBOD values. 

The input parameters predicting CBOD consists of the CBOD values recorded in the past, 

also referred to as ‘memory parameters’.  

Owing to seasonal variations in the CBOD values, models incorporating 

seasonality are also considered.  The initial data is divided into four seasons: Season 1 
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(Jan-Mar), Season 2 (Apr-June), Season 3 (July-Sep), and Season 4 (Oct-Dec). The run 

chart of the CBOD values for the four data seasons is plotted. It can be seen in Fig. 4.7 

that CBOD in Season 1 behaves similarly to Season 2, whereas Season 3 is similar to 

Season 4. Based on this observation, data corresponding to Seasons 1 and 2 is combined. 

The resulting combination constitutes the modified seasonal model. The distribution of 

the data split is provided in Table 4.4.  
 
 
 

 
Figure 4.7. Run chart of CBOD in different seasons 

 
 
 

 Table 4.4. Data split description 

No. Model Type Dataset No. Remarks 
1 Integrated model 01 Entire year data 

2 Seasonal model 
04 (Spring, Summer, Fall, 

Winter) 

Seasonal data  (Data from 
Jan-Mar, Apr-Jun, Jul-Sep, 

and Oct-Dec) 

3 
Modified 

seasonal model 
02 (Low CBOD Season, 

High CBOD Season) 
Seasonal data  (Data from 

Jan-Jun, and Jul-Dec) 

 

0.000

100.000

200.000

300.000

400.000

500.000

600.000

700.000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86

C
B

O
D

Data point No.

Spring Summer Fall Winter



www.manaraa.com

52 
 

 

In the research reported in this research, four data-mining algorithms are applied 

to the three datasets. The CBOD prediction models are expressed in (4.5)-(4.6).  
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In the integrated model (4.5), the predicted daily CBOD value ( ( )tŷ integrated ) is a 

function of the memory parameters (i.e., CBOD values of past 10 days) and the statistical 

measures, such as mean, maximum, minimum, and standard deviation of past 10-day 

data. Thus, the total number of input parameters is 14. In the seasonal model (10), ( )tŷseasonal  

is a function of the input parameter over the past 5-year data (denoted as y in the CBOD 

subscript), the past 10-day data of the same year as its memory parameter, and the 

statistical measures of the 5-year and 10-day data. The overall number of input 

parameters for the seasonal model is 23. The same function is applied to the modified 

seasonal dataset.   

Four data-mining algorithms – the multilayered perceptron (MLP), the 

classification and regression tree (C&RT), the multivariate adaptive regression spline 

(MARS), and the random forest (RF) – are employed to construct prediction models. 

MLP is a feed-forward neural network algorithm; it learns hidden patterns in the data by 

adaptively adjusting the weights of its neurons The MLP structure includes input layers, 

hidden layers, and an output layer. MARS is a non-parametric algorithm for solving 

regression-type problems. It predicts continuous parameters based on a set of predictors. 
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RF is data-mining approach used for both classification and regression; it selects the best 

split of a node based on the randomly selected subset of predictors. C&RT constructs 

binary trees for both classification trees and regression and uses the minimization of 

prediction square errors as criteria for splitting the nodes.   

Table 4.5 describes the results produced by the four data-mining algorithms. For 

the integrated model, the MLP outperformed the remaining three data-mining algorithms 

by achieving a prediction accuracy of over 85%.  The accuracy of the other three 

algorithms – MARS, C&RT, and RF – is similar.   
 
 
 

Table 4.5. Integrated model training results 

Algorithm  MAE MRE (%) Accuracy (%) 

MLP 35.84 14.91 85.08 
C&RT 38.92 16.64 83.35 
MARS 39.14 16.39 83.60 
RF 37.27 16.63 83.36 

 
 
 

Table 4.6 presents the test results produced by the four seasonal models 

constructed by different data-mining algorithms. Satisfactory accuracy was found for the 

fall seasons (86.88%) and winter (89.84%); however, spring and summer (30.00%) 

seasons yielded rather low accuracy. The reason behind this poor accuracy is the low 

target CBOD values which were not seen in the training data set. Figs (4.8)-(4.9) 

compares the results for the spring and winter seasons. It can be seen from Fig. 8 that the 

actual CBOD values are low. The MARS algorithm frequently over-predicted as it 

learned from higher values. The predicted values shown in Figs (4.8)-(4.9) were 

produced by the best-performing algorithms.    
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Talbe 4.6. Test results for seasonal models 

Spring 
Algorithm  MAE MRE (%) Accuracy (%) 

MLP 146.0 218.86 N/A 
C&RT 213.6 296.3 N/A 
MARS 87.04 135.0 N/A 
RF 166.7 240.8 N/A 

Summer 
Algorithm  MAE MRE (%) Accuracy (%) 

MLP 152 230.0 N/A 
C&RT 90.66 143.38 N/A 
MARS 45.49 69.00 30.99 
RF 97.00 166.13 N/A 

Fall 
Algorithm  MAE MRE (%) Accuracy (%) 

MLP 40.17 21.18 78.81 
C&RT 23.69 13.80 86.19 
MARS 24.06 13.11 86.88 
RF 53.99 27.34 72.65 

Winter 
Algorithm  MAE MRE (%) Accuracy (%) 

MLP  42.06 15.56 84.44 
C&RT 59.43 21.77 78.22 
MARS 39.56 15.17 84.82 
RF 28.53 10.15 89.84 

 
 
 

 
Figure 4.8. Actual and predicted CBOD values in spring season 
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Figure 4.9. Actual and predicted CBOD values in winter season 

 
 
 

Overall, the MARS algorithm provided the best accuracy for most seasonal 

models. The algorithms selected to perform time-ahead predictions are shown in bold 

(Table 4.6). Table 4.7 summarizes the results obtained from the modified seasonal 

models; namely, high CBOD and low CBOD seasons. As anticipated, algorithms 

predicting high CBOD values yielded better results when compared with the algorithms 

predicting low CBOD. For the high CBOD model, C&RT yielded the best accuracy of 

86.51%; whereas, for the low CBOD model, MLP yielded the best accuracy of 69.76%.  
 

 

 

 Table 4.7. Test results produced from the modified seasonal model 

Low CBOD season 
Algorithm  MAE MRE (%) Accuracy (%) 

MLP 27.88 30.24 69.76 
C&RT 51.73 46.88 53.12 
MARS 34.26 34.73 65.21 
RF 36.89 43.47 56.52 

High CBOD season 
Algorithm  MAE MRE (%) Accuracy (%) 

MLP 77.66 30.99 69.00% 
C&RT 31.90 13.48 86.51% 
MARS 33.33 14.51 85.48 
RF 36.46 14.58 85.41 
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4.4 Computational results 

In this section, the algorithms that produced the best-performing models are 

employed to perform time-ahead predictions. The maximum prediction length is five 

days.  

4.4.1 Prediction results for integrated model 

In this model, the MLP algorithm is used to perform predictions. Table 4.8 

presents the results obtained for five-day-ahead predictions. Accuracy in the range of 

67.43-77.06% is found. Fig. 4.10 displays the actual and predicted CBOD values at t + 0 

days. Fig. 10 demonstrates that, in most cases, the MLP is able to approximate the CBOD 

values.   
 
 
 

 Table 4.8. Time-ahead predictions by the integrated model 

Time stamp 
[days] 

MAE MRE (%) Accuracy 

t + 0 30.88 22.93 77.06 
t + 1 33.78 25.44 74.55 
t + 2 36.08 27.67 72.32 
t + 3 38.38 29.74 70.25 
t + 4 40.02 31.36 68.63 
t + 5 41.17 32.57 67.43 

 

 

 
Figure 4.10. Comparison of actual and predicted CBOD values produced with the MLP 

algorithm 
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4.4.2 Prediction results for seasonal data 

In this section, CBOD in the fall season is predicted using MARS; whereas, in the 

winter, it is predicted with RF. The fall season accuracy is in the range of 75.61-85.81% 

for five days, whereas the winter season accuracy is in the range of 88.73-89.00% (see 

Table 4.9). RF yielded consistent accuracy in five-day-ahead predictions with steady 

predicted values. The pattern of actual values was not successfully found. Figs 4.11-4.12 

compare the actual and predicted values for t + 0 days ahead for the fall and winter 

seasons, respectively.  
 
 
 
 

Table 4.9. Accuracy of the time-ahead prediction of seasonal models 

Fall season (MARS) 
Time stamp 

[days] 
MAE MRE (%) Accuracy 

t + 0 26.06 14.18 85.81 
t + 1 32.23 17.03 82.96 
t + 2 33.91 18.67 81.32 
t + 3 37.31 20.78 79.21 
t + 4 38.61 22.20 77.79 
t + 5 42.33 24.38 75.61 

Winter season (RF) 
Time stamp 

[days] 
MAE MRE (%) Accuracy 

t + 0 31.44 10.95 89.04 
t + 1 31.46 10.99 89.00 
t + 2 31.52 11.00 88.99 
t + 3 31.55 11.00 89.00 
t + 4 31.87 11.14 88.85 
t + 5 32.17 11.26 88.73 
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Figure 4.11. Comparison of the actual and predicted CBOD values in the fall season 

 
 
 

 
Fiture 4.12. Comparison of the actual and predicted CBOD values in the winter season 

 
 
 

4.4.3 Prediction results for modified seasonal data 

In this section, the low CBOD season data is predicted with the MLP algorithm; 

whereas the high CBOD season data is predicted with the C&RT algorithm. Table 10 

describes the results produced for both seasons. The accuracy in the high CBOD season 

is in the range of 84.82-87.69%. In the low CBOD season, the accuracy is in the range of 

46.31-70.51%.  Compared with the results obtained in the spring and summer seasons 

(discussed in Section 3.2.2), an improvement of 16-40% in overall accuracy is obtained; 

however, compared with the high CBOD season, the accuracy is still quite low. Figs 
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(4.13)-(4.14) show the run chart comparison of the actual and predicted values in high 

CBOD and low CBOD seasons, respectively.  
 
 
 

Table 4.10. Prediction results for the modified seasonal data 

High CBOD season (C&RT) 
Time stamp 

[days] 
MAE MRE (%) Accuracy 

t + 0 32.61 13.93 86.02 
t + 1 35.37 15.17 84.82 
t + 2 31.48 13.75 86.24 
t + 3 32.28 13.70 86.29 
t + 4 34.13 14.04 85.95 
t + 5 29.39 12.32 87.69 

Low CBOD season (MLP) 
Time stamp 

[days] 
MAE MRE (%) Accuracy 

t + 0 28.91 30.16 70.51 
t + 1 32.76 34.76 65.90 
t + 2 36.93 39.97 60.02 
t + 3 40.06 45.25 54.74 
t + 4 40.66 47.21 52.78 
t + 5 46.54 53.55 46.31 

 

 

 

 
Figure 4.13. Comparison of the actual and predicted values in the high CBOD season 
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Figure 4.14. Comparison of the actual and predicted values in the low CBOD season 
 
 
 

Based on the results shown above, the seasonal models are suitable for prediction 

in the fall and winter seasons when the CBOB values are high; for the lower CBOD 

values, however, the modified seasonal models are appropriate. Even though the average 

accuracy of the integrated model is high compared with the low CBOD season model, the 

prediction accuracy for low CBOD seasons is rather low.   
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CHAPTER 5 

OPTIMIZATION OF WASTEWATER PUMPING PROCESS 

5.1 Introduction 

To lift raw wastewater collected from sewer lines to following treatment process, 

particularly where the elevation of the wastewater inlet is not sufficient for gravity flow, 

boosting pumps are usually used [67, 68]. This wastewater pumping process consumes a 

significant electricity to deliver wastewater. It typically consumes 10% to 20% of the 

total energy used by the whole plant.  

Conventional wastewater treatment plants use a wet well to temporally store the 

raw wastewater. The purpose of it is to provide a method allowing automatic operation of 

the boosting pumps with a simple control [69]. Multiple pumps are controlled and 

supervised by the programmable logic controller (PLC).  The drawback of such simple 

PLC control is not efficient in pumping operation. The pre-defined control scheme may 

not be able to select the best pump configuration to run and properly adjust the pump 

rotating speed. In addition, the inflow rate of the raw wastewater changes significantly 

over time and weather condition such as rainstorm [70]. The pump performance also 

declines with time, and the efficiency of the pump usually gets worse.  Therefore the 

operation of the pumping process is not highly efficient under such control scheme, 

resulting in energy waste.  

To save energy consumption in wastewater pumping process, different 

approaches have been investigated.  More efficient pumps have been designed and many 

control schemes have been developing [71-74]. Besides the improvement on the single 

pump, Ma and Wang [75] has presented an optimal control strategies for variable speed 

pumps with different configurations in complex building air conditioning systems to 

enhance the energy efficiency. The results showed that about 12-32% of pump energy 

could be reduced by using the optimal control settings. A pilot study by Zhang et.al [76] 



www.manaraa.com

62 
 

 

obtained a 24.25% energy saving by using the optimal pump system schedule in a 

wastewater treatment plant.  

In this work, pumping operation is optimized with a data-driven model derived by 

multi-layer perceptron (MLP) neural networks. Data-driven approach has been 

successfully used in scientific and engineering applications, such as wind energy, HVAC, 

and wastewater treatment [77-79] to improve process or energy efficiency. The goal of 

optimization in this research is to reduce the energy consumption by wastewater pumping 

process. The configuration of pumps, i.e., the number of running pumps and the rotating 

speed of the pump are two control variables in the problem formulation. To find the 

optimal operation configuration, a two-level integration algorithm is proposed and 

employed to find solutions for running number of pumps and rotating speed. The model 

and the optimization results are then discussed in detail.  

5.2 Data description 

The data used in this work was also collected at the Wastewater Reclamation 

Facility (WRF), located in Des Moines, Iowa. WRF is operated to treat wastewater from 

17 metro area municipalities, counties, and sewer districts. It serves a population of 

500,000 and processes over 50 MGD of raw wastewater per day.    

WRF operates 6 pumps to lift the raw wastewater. As shown in Figure 5.1, the 

wastewater collected from areas is flown into the plant and pass the bar screens. The big 

items, such as rocks and trunks, are screened out for later disposal. The grit chamber is 

used to settle down stones and sands.  Then the wastewater enters into the wet well and is 

lifted by raw wastewater boosting pumps to the primary clarifier for the initial treatment.  

Each pump is rated as 55 MGD capacity and 700 kW per 15 minutes with variable speed 

drive.  Based on the inflow rate and wet well level, the number of operating pumps varies 

to keep the wet well level. For example, more pumps are operated when wet level and 
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inflow rate are high. The control scheme is determined by a pre-programmed PLC 

control.  
 
 
 

Figure 5.1. Flow chart of wastewater pumping process 
 
 

 

The wastewater pumping process data used in this research is taken over the 

period from 4/1/2011 to 8/4/2012. The data is processed to exclude errors and outliers. 

There are 62 possible configurations theoretically for 6 pumps operation. Through mining 

the dataset, 20 different configurations are found. Other configurations are not available 

in current dataset because of the operation practice in the plant. The dataset used to build 

models is summarized in Table 5.1. The operated pump in each configuration is shown in 

the second column. For example, pumps {2, 3} are running simultaneously in 

configuration C10, and pumps {1, 3, 4, 5} are operated at the same in configuration C20. 

The available cases for each configuration is divided into training set to build the models 

and the test set to validate the accuracy of the models.  
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Table 5.1. Dataset description 

Configuration Pumps  Available cases Training cases test cases 
C1 {1} 5374 4030 1344 
C2 {2} 4421 3315 1106 
C3 {3} 5550 4162 1388 
C4 {4} 7904 5928 1976 
C5 {5} 4397 3297 1100 
C6 {6} 2002 1501 501 
C7 {1,2} 491 368 123 
C8 {1,4} 607 455 152 
C9 {1,5} 377 282 95 
C10 {2,3} 2334 1750 584 
C11 {2,4} 897 672 225 
C12 {3,4} 364 273 91 
C13 {4,5} 277 207 70 
C14 {4,6} 1052 789 263 
C15 {5,6} 714 535 179 
C16 {1,4,5} 405 303 102 
C17 {2,4,5} 353 264 89 
C18 {2,4,6} 468 351 117 
C19 {3,4,5} 482 361 121 
C20 {1,3,4,5} 330 247 83 

 
 
 

5.3 Building and validating models 

To optimize the wastewater pumping process, the model of total pumping energy 

consumption should be built. Different from a mathematical equation from the 

engineering principle, the model is built based on the operation data by data-mining 

algorithm.  Equation (5.1) and (5.2) express the total pumping energy consumption P  

and energy usage ,i tp of a single configuration: 

                                        
20

1

, ,

C

i t i t
i C

P p x
=

=∑                                                                 (5.1)                   

, ,( )i t i t tp f v L=                                                                (5.2) 
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where i indicates the ith number of configuration listed in Table 5.1 . ,i tx is a binary 

variable which either equals one or zero. The summation of all ,i tx should be equal to 1 as 

only one configuration should be on at time t . ,i tv is the pump speed for that 

configuration and tL is the wet well level at time t . 

The energy usage ,i tp of a single configuration is modeled by multi-layer 

perceptron (MLP) neural network.  MLP neural networks have been successfully used to 

find the complex and non-linear pattern in science and engineering problems [80, 81]. In 

this work the number of hidden layer is 1 and the number of neurons in the hidden layer 

varies in order to obtain higher accuracy. Different activation functions, i.e., logistic, 

tanh, sigmoid, identity and sigmoid, are selected during training process.  

As shown in Figure 5.2, the first 40 cases in the test set in configuration C1 have 

been successfully modeled by MLP neural network. The observed and predicted values 

are very close to each other as well as the well modeled trend. Figure 5.3 shows the 

similar modeling results. Table 5.2 summarizes the prediction accuracy metrics for all 

configurations. It also illustrates the excellent accuracy of the models.  
 
 
 

 

 
 

Figure 5.2. Observed and MLP neural network model predicted energy consumption for 
C1 
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Figure 5.3.  Observed and MLP neural network model predicted energy consumption for 

C20 
 

 
 
 

Table 5.2. Performance metrics of energy consumption models 

Configuration MAE MAPE SD of APE 
C1 5.860669733 0.016959492 0.012649011 
C2 24.59039875 0.064456634 0.040341825 
C3 8.965691004 0.021630219 0.017612145 
C4 8.044528664 0.020567482 0.015890538 
C5 5.269917086 0.016643775 0.022236368 
C6 11.05984522 0.034307164 0.03591208 
C7 18.40614128 0.032814162 0.03080949 
C8 5.34561635 0.008269741 0.006961746 
C9 11.42316688 0.014271535 0.012547263 
C10 12.09757271 0.018873324 0.012661691 
C11 14.71821326 0.025777816 0.02445185 
C12 5.371886446 0.00988624 0.006759664 
C13 10.00627462 0.016004065 0.023185261 
C14 15.35672135 0.027175781 0.020558307 
C15 19.12878501 0.038058685 0.030396031 
C16 11.83564606 0.010016076 0.008311363 
C17 8.074325455 0.00734845 0.00554528 
C18 13.84064385 0.014572221 0.014619868 
C19 15.03526129 0.015937855 0.015868939 
C20 20.10760802 0.012819738 0.008056547 
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Besides energy consumption model, the wastewater outflow rate model is also 

built by MLP neural network. The purpose to develop this model is to compute the wet 

well level change at two continuous time step. The outflow rate ,i tO  for the ith 

configuration can be expressed in Equation (5.3), and the wet well level change can be 

calculated as shown in Equation (5.4): 

, ,( )i t i t tO h v L=                                                                      (5.3) 

   ,t i t
t t T

I O
L L

A−

−
− =                                                              (5.4) 

where h  is the function which is obtained by MLP neural network. tI  is the inflow rate 

flowing into the wet well at time t , A is the area of the wet well.  

Figure 5.4 and 5.5 show the first 40 cases of modeling results of the wastewater 

outflow rate for configuration 1 and configuration 20. The prediction is well performed 

by MLP neural network. The computed prediction metrics shown in Table 5.3 also 

indicate the outflow rate is well modeled.  
 
 
 

 
 

Figure 5.4. Observed and MLP neural network model predicted outflow rate for C1 
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Figure 5.5. Observed and MLP neural network model predicted outflow rate for C20 
 
 
 
 

Table 5.3. Performance metrics of energy outflow rate models 

Configuration MAE MAPE SD of APE 
C1 2.762826 0.07105776 0.069098709 
C2 3.617816 0.08703103 0.076412469 
C3 2.901154 0.06592743 0.080804995 
C4 3.651067 0.08249157 0.08752017 
C5 2.98317 0.06720429 0.061726867 
C6 6.71276 0.16561686 0.130624141 
C7 3.886455 0.06027305 0.049863389 
C8 1.260544 0.01558512 0.010764965 
C9 2.481695 0.03171347 0.11446598 
C10 2.026298 0.02906259 0.02413035 
C11 5.13326 0.07972925 0.075420871 
C12 1.951649 0.03241246 0.026701404 
C13 5.569913 0.07035922 0.085815405 
C14 6.493714 0.0887062 0.163131003 
C15 4.688093 0.0700909 0.166293597 
C16 3.210542 0.02026464 0.025675297 
C17 1.194051 0.00877542 0.007754813 
C18 2.334557 0.02118571 0.017524321 
C19 5.110837 0.04467025 0.052162884 
C20 2.732426 0.01506617 0.011233222 
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5.4 Optimizing pumping process 

5.4.1 Problem formulation 

The model trained by the MLP neural network is used to construct the 

optimization model. To optimize pumping process, the single objective minimizing the 

energy consumption of pumping process can be expressed as a function of control 

variables subjecting various constraints.  

According to the operation conditions at WRF, the number of operating pumps at 

the same can be adjusted as well as the rotating speed of the pump. They are the two 

decision variables to be optimized in this research.  

The constraints are based on physical limitation and operation practice.  

1. Only one case described in Section 5.3 can be effective at one time step. It 

means that all other cases are off when one case is on.  

2. The wet well level change cannot exceed a defined value δ  

3. The high wet well level must be no more than the maximum allowable value 

maxL .  

4. The rotating speed of pump should be from 80% to 100% full speed to keep the 

pump efficiency.  

Therefore, the single optimization problem can then be formulated in (5.5): 
 

   
,

min
x v

P               

     subject to: 

                                                                 
20

1

, ,

C

i t i t
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P p x
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                                                                 , 0 1i tx or∈〈 〉                                  (5.5) 

5.4.2 Two level integration algorithm 

Finding the optimal solution for an optimization problem is challenging, 

especially for the problem presented in this chapter, which is a mixed-integer nonlinear 

programming problem.  It is not suitable to solve it with a traditional optimization 

algorithm, such as Genetic Algorithm (GA) or Particle Swarm Optimization Algorithm 

(PSO).  

In this research, a two-level intelligent algorithm is proposed to solve the mixed-

integer nonlinear optimization problem.  Genetic algorithm [82] is a powerful, general 

purpose optimization method mimicking biological evolution and it has been successfully 

applied to solve complex optimization problems. The solutions of a GA are encoded as 

chromosomes and are evaluated by a fitness function. Pairs of chromosomes selected are 

based on the values of the fitness function to produce new solutions using crossover 

operator. Mutation of solutions is also used to promote genetic diversity.  GA algorithm 

preserves solutions that yield high fitness values, and disregards poor quality solutions. 

As it performs well in discrete optimization problem, it is employed at the first level to 

find the optimal solution of the discrete decision variable in (5.5).  

At the second level, the decision variable of the pump rotating speed should be 

solved. As it is a continuous variable, therefore, an improved particle swarm optimization 

is employed at the second level to optimize the pump rotating speed.  Particle swarm 

optimization (PSO) is a stochastic optimization algorithm developed by Eberhart and 

Kennedy in 1995 [83] which was inspired by the social behavior of birds flocking or fish 

schooling. PSO has been successfully applied in many research and application areas. It 

has been demonstrated that PSO produces better results in lower computational time 

compared with other algorithms. Moreover, PSO has relatively few parameters that need 

to be adjusted which makes it easier to use.  
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The standard PSO has some drawbacks. Firstly, the computation results have 

direct relationship with the parameters. A good selection of parameters can result in 

better solutions. Secondly, the parameters of PSO are constants. It means they are not 

changing during the optimization process. And lastly, PSO is easy to be trapped in local 

optimal.  

The larger inertia weight when updating the velocities of the particles in PSO 

ensures a more effective global search, while smaller inertia weight enables a more 

efficient local search [84]. Similarly, the learning factors control the ability of local 

extremes and global extremes search. Therefore, the improved PSO introduces dynamic 

inertia weight and learning factors, so the particles can search the entire solution space 

without falling into local optimum in the early iterations. The exceeding boundary control 

is also introduced the improved PSO algorithm to enhance the overall ability of the 

algorithm. When the position of the particle is out of the boundary, the position is 

redefined to make it is in the range of feasible solutions. This approach also ensures the 

diversity of new particles for undetermined boundary constraints.  

The steps of the proposed two-level intelligent algorithm can be expressed as 

follows: 

First level: Genetic Algorithm 

Step 1: Generate initial population of (n) chromosomes. 

Step 2: Assign fitness of each chromosome in that population using the improved 

PSO at level 2. 

Step 3: Select two best fit chromosomes for reproduction. 

Step 4: With a crossover probability cross over the parents to breed a new 

offspring. 

Step 5: With a mutation probability mutate new offspring at each locus. Place new 

offspring in a new population. 
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Step 6: If stopping condition is satisfied, then stop and return the best solution in 

current population. Otherwise, return to Step 2 to start next iteration. 

Second level: Improved Particle Swarm Optimization Algorithm 

Step 1: Randomly initialize n particle positions n
id R∈  and velocities n

iv R∈ . 

Step 2: Evaluate fitness value if  using current particle positions. 

           If b
i if f≤ , then b

i if f= , b
i ip d=  

           If g
if f≤ , then g

if f= , g
ip d=  

Step 3: Update all particle velocities iv  

           1 1 2 2( ) ( )g
i i i i iv v c r p d c r p dω= + − + −  

           max max min( ) /k Itω ω ω ω= − −  

           1 1 1 1( ) /start start endc c k c c It= − −  

           2 2 2 2( ) /start start endc c k c c It= − −  

Step 4: Update all particle positions id  

            i i id d v= +  

             If the particle position is moved out of the boundary, the current velocity 

of the particle is recalculated based on its distance to the boundary and the variation 

range. 

             * /i iv dis v Vari= −  

Step 5: Update fitness valuebif  and gf  

Step 6: If the stopping condition is satisfied, then gf is the final optimal solution 

with the particle position gp . Otherwise, return to step 3 to start next iteration. 

Here, n is the number of chromosomes of the first level GA algorithm, particle’s 

position and velocity are id and iv respectively. .  Parameterbip is the best individual 

particle position, and gp is the best global position.ω  is the inertia weight, maxω is the 

maximum and minω is the minimum weight 1c  and 2c are cognitive and social parameters, 

1startc , 1endc , 2startc , and 2endc  are the start and end values of these learning factors. k and 

It  are current iteration number and total iteration numbers, respectively. 1r  and 2r are 
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random numbers between 0 and 1. dis is the distance of the particle which moves outside 

the boundary to the boundary, and Vari  is the variation range. Figure 5.6 shows the flow 

chart diagram of the proposed two-level intelligent algorithm. 
 
 
 

 
Figure 5.6. The two-level intelligent algorithm 
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5.4.3 Results and discussion 

120 cases from the dataset are used to solve model (5.5) with the proposed two 

level integration algorithm. As the quantity of wastewater inflow rate has impact on 

pumping energy consumption, 3 scenarios are investigated in this research and each 

scenario uses 40 cases. High wastewater inflow rate from 130 to 170 MGD is classified 

as scenario 1. Scenario 2 with medium inflow rate is from 70 to 80 MGD, and scenario 3 

has low inflow rate ranging between 30 to 50 MGD. 

Figure 5.7 shows the optimization results for scenario 1. Under the optimized 

operation, i.e., the optimal combination of running pumps and the optimal rotating speed, 

the pumping energy consumption can be reduced by 26.9%. The reduced energy usage is 

mainly due to the finding of a better operating pump combination than the automatic 

selection by PLC. For example, pump {1, 2, 3, 4} was the operated pumps in the first 

case, however, pump {3, 4, 5} is the better configuration for the same inflow rate based 

on the optimization result. This different configuration can save significant energy 

consumption while keeping almost same wet well level and deliver the same amount of 

outflow (shown in Figure 5.8 and 5.9). This enables the stable operation of following 

wastewater treatment process. It is worth to point that the fluctuation in the optimized 

pump energy consumption is caused by the optimal pump rotating speed. For scenario 1, 

the original cases have used different pump configurations. The optimized cases have 

only one configuration but they consume different energy with different pump speeds. To 

limit the impact to the electricity grid, a constraint to restrain the fluctuation of the energy 

consumption or smaller the pump speed range may be considered in future research.  

Figure 5.10 and 5.11 illustrate the optimization results for scenario 2 and 3.  

Several cases in scenario 2 consume little higher energy when comparing between 

observed and optimized results. That is due to the problem formulated in Section 5.4.1 is 

global optimized. For scenario 2 and 3, the pump energy consumption are reduced 31.6% 
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and 18.2%, respectively. The main reduction also comes from the optimal pump 

configuration and rotating speed of the pumps.   

 
 

 

 
Figure 5.7. Observed and optimized pump energy consumption for scenario 1 

 
 
 
 
 

 
Figure 5.8. Observed and optimized wet well level for scenario 1 
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Figure 5.9. Observed and optimized outflow rate for scenario 1 
 
 

 
 

 

 
Figure 5.10. Observed and optimized pump energy consumption for scenario 2 
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Figure 5.11. Observed and optimized pump energy consumption for scenario 3 

 
 

Figure 5.12 and 5.13 show the optimization results of wet well level and outflow 

rate for scenario 2, as well Figure 5.14 and Figure 5.15 for scenario 3.  The optimized wet 

well level and outflow rate are very close to the observed values for scenario 2. For 

scenario 3, the optimized outflow rate has some variations from observed values. That is 

because the flow rate is low for this scenario. Small changes in pump speed may cause 

large fluctuation in outflow rate in this scale.  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 5.12. Observed and optimized wet well level for scenario 2 
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Figure 5.13. Observed and optimized outflow rate for scenario 2 

 

 

 

 

 

 

 

 

 

 

Figure 5.14. Observed and optimized wet well level for scenario 3 
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Figure 5.15. Observed and optimized outflow rate for scenario 3 

 
 
 

 

The optimized results for three scenarios are summarized in Table 4. It can be 

seen that the wet level and outflow rate have little changes before and after optimization. 

But huge energy reduction can be achieved for all scenarios, where scenario 2 with 

medium inflow rate has the biggest energy decrease.  The results reveal that the data-

driven approach is capable to optimize the wastewater pumping process and reduce the 

energy cost while keeping stably operation of the following process.  
 
 
 

Table 5.4. Pumping process optimization results 

 Energy consumption 
(%) 

Wet well 
level (%) 

Outflow rate 
 (%) 

Scenario 1 -26.9 -1.1 0 
Scenario 2 -31.6 -0.8 0 
Scenario 3 -18.2 1.5 -1.0 
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CHAPTER 6 

ENERGY EFFICIENCY OPTIMIZAITON OF THE 

ACTIVATED SLUDGE PROCESS 

6.1 Introduction 

The activated sludge process (ASP) is one of the key processes in wastewater 

treatment plants (WWTPs) [85]. Microorganisms in the recycled sludge feed on organic 

matter in the wastewater, and they grow to form flocs that clump together and settle to 

the bottom of the final clarifier, leaving a relatively clear, liquid-free organic material and 

suspended solids [86].   

In the activated sludge process, a large amount of air is injected into an aeration 

basin to provide oxygen for growing microorganisms and to keep solids in suspension 

[87]. The air is usually provided by high volume blowers or low pressure compressors 

through a diffused aeration system. These various components of the activated sludge 

process account for 45% to 60% of the WWTP’s total energy consumption. 

Reduction of the energy consumption of the activated sludge process is of interest 

to researchers and engineers [88-94]. A traditional approach for reducing energy 

consumption was based on improving the design of the aeration system. Using fine-pore 

diffusers instead of coarse bubble or surface aerators, the oxygen transfer rate can be 

improved significantly [95]. Appropriate sizing and selection of aeration equipment may 

impact energy use. Since blower power is a cubic function of airflow, it is important to 

select properly-sized blowers supplying sufficient, but not excess, air to the aeration 

basin.  

An alternative way to improve the efficiency of the activated sludge process is to 

implement process control systems [96-100]. Either excessive or inadequate air in the 

activated sludge process may lead to energy waste and operational problems. Excessive 

air can result in energy waste and an increased sludge volume index, which may be 



www.manaraa.com

81 
 

 

harmful to the sludge. Inadequate air can cause sludge settling problems as 

microorganisms die due to insufficient oxygen. Through proper process control, the 

activated sludge process can meet the effluent requirements while minimizing energy 

consumption.  

Dissolved oxygen (DO) is a crucial control variable that indicates the amount of 

oxygen in the wastewater. It implies how much airflow is required by the process. In 

practice, the DO concentration can be controlled between 1.0 and 6.5 mg/L. Various 

controllers have been developed to control DO concentration in the wastewater [101-

103]. Piotrowski et al. [104] proposed a hierarchical controller for tracking the DO 

reference trajectory in activated sludge processes. A non-linear model predictive control 

algorithm was used to design the controller. The simulation showed promising results in 

energy reduction and robust DO tracking. DO is useful for controlling the activated 

sludge process, but the proper determination of DO concentration over time is 

complicated by the existence of pollutants in the wastewater and by the fact that the 

influent flow rate and other uncontrollable variables, such as temperature, are interrelated 

and change over time.  

In this research, a data-driven approach is presented for the optimization of 

energy efficiency in the activated sludge process. The air required by the process is 

optimized by an evolutionary computation algorithm by controlling the DO concentration 

as identified by a data-mining algorithm. Data-mining algorithms determine relationships 

between input and output variables based on the process data. The data-derived model is 

solved with an evolutionary computational algorithm to produce optimized values of the 

control variables. Data-driven approaches have been used successfully in engineering and 

industry [105-108] when physics-based models could not be used.  

This work is organized as follows. Section 6.2 describes the data used in this 

research and details of our data processing techniques. In Section 6.3, neural network 

algorithm is used to design and validate the models of airflow rate and effluent pollutant 
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concentrations. In Section 6.4.1, Strength Pareto Evolutionary Algorithm 2 (SPEA2) is 

used to optimize the activated sludge process to determine the optimal concentration of 

DO. Section 6.4.2 formulates the optimization problem of the activated sludge process. 

Section 6.4.3 presents the optimization results of three scenarios representing a tradeoff 

between energy consumption and quality of the effluent. Two control strategies, i.e., 1) 

varying the DO concentration hourly and 2) keeping the DO concentration constant daily, 

were implemented and compared.  

 

6.2 Data description 

The Des Moines Wastewater Reclamation Authority (WRF) operates a 97-

million-gallon-per-day (MGD) regional wastewater treatment plant in southeast Des 

Moines, Iowa. The peak influent flow rate can be as high as 200 MGD. The plant was 

constructed in the mid-1980s mainly to treat municipal wastewater and storm water from 

the greater Des Moines metropolitan area. The activated sludge process is used to remove 

organic compounds from the wastewater via biological processes. 

A flow diagram of the wastewater treatment process that the WRF uses at the 

regional plant is shown in Figure 6.1. The collected wastewater enters the plant and 

passes through five bar screens. Large items, such as rags and sticks, are screened out for 

later disposal. After screening, the influent wastewater enters a wet well and then is 

pumped to primary clarifiers. After a retention time of 1 to 2 h, scum floats to the surface 

where it is removed by a skimmer. Then, the wastewater is delivered by intermediate 

pumps to six adjacent aeration tanks, each of which is divided into four basins. Each 

basin is 300 feet long, 35 feet wide, and 20.9 feet deep. Process air is provided by single-

stage centrifugal blowers with maximum capacity of 35,000 scfm. During normal 

operations, a required quantity of the sludge from the secondary clarifiers, called returned 

activated sludge (RSL), enters the aeration tanks through sludge pumps. When the RSL 
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and the wastewater are mixed, microorganisms in the activated sludge use oxygen 

provided by the fine bubble diffusers located on the bottom of the aeration basins to 

break down the organic matter. The remaining sludge from the secondary clarifiers and 

the sludge from the primary clarifiers are pumped to the anaerobic digesters to produce 

biogas. The liquid from the secondary clarifiers flows to the chlorine contact tanks where 

chlorine is injected to kill most bacteria. The final effluent is discharged to the river.  
 
 
 

 

Figure 6.1. Flow diagram of the activated sludge process 

 
 
 

The data used in this research were collected from 1/1/2010 through 12/31/2010. 

Since many variables are involved in the activated sludge process, a boosting tree 

algorithm [109] was used to evaluate the relative importance of the process variables. 

Hourly and daily data were collected. The hourly data included the influent flow rate, 

returned sludge flow rate, DO concentration, and airflow rate. The daily data (measured 

three times a week) included the carbonaceous biochemical oxygen demand (CBOD) in 

the effluent, the total suspended solids (TSS) in the effluent, and the temperature and pH 

in the aeration tank. These data were used to develop the models of the airflow rate and 
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effluent pollutant concentrations by a data-mining algorithm. Errors and outliers in the 

dataset were removed to improve the accuracy of the models. The final dataset was 

divided into a training dataset and a test dataset. The two datasets are described in Table 

6.1.  
 
 
 

Table 6.1. Description of the datasets  

Dataset Description Observations Time Period 

1 
Model training dataset: Building  
prediction models 

Hourly 4368 data points 
Daily 90 data points 

1/1/2010 
through 
8/25/2010 

 
2 

 
Model test dataset: Testing 
prediction model and 
optimization  

 
Hourly 2544 data points 
Daily 50 data points 

 
8/26/2010 
through 
12/31/2010 

 
 
 

The airflow rate of the ASP provides a measure of the energy consumed, which 

was one of the objectives of this study. In the model that predicted the airflow rate, DO 

concentration was a controllable variable. The flow rates of the influent and the returned 

sludge were uncontrollable variables. With less air flowing into aeration tanks, the quality 

of the effluent was degraded, which was a matter of concern because it is desirable to 

maximize the quality of the effluent to meet federal and state requirements. Since CBOD 

and TSS in the effluent reflect the quality of the effluent, the objective can be 

transformed to minimize the concentrations of CBOD and TSS in the effluent, thus 

CBOD and TSS models were built by data-mining algorithm. Temperature and pH values 

are uncontrollable variables that affect the quality of the effluent. All variables used in 

this research are presented in Table 6.2. 
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Table 6. 2. Variables and their units 

Variable Description Unit 

u1 Influent flow rate MGD  
u2 Returned sludge flow MGD  
u3 Temperature °C 
u4 pH  
x Dissolved oxygen mg/L 
y1  Airflow rate scfm  
y2 Effluent CBOD mg/L 
y3 Effluent TSS mg/L 

 
 
 

A multi-objective model that minimized the airflow rate, 1y , the effluent COBD, 

2y , and the effluent TSS, 3y , was formulated in (1). Since the CBOD and TSS of the 

effluent were daily data, the hourly data of influent flow rate, returned sludge flow rate, 

and the concentration of DO was averaged to daily values. The constraints used in the 

model are discussed in Section 6.4. 

                                            1 2 3min( , , )y y y                          

             where:      1 1 1 2( , , )y f u u x=                     

                2 2 1_ 2_ 3 4( , , , , )ave ave avey f u u u u x=                      

     3 3 1_ 2_ 3 4( , , , , )ave ave avey f u u u u x=                         (6.1) 

 

6.3 Model building and validating 

Neural network (NN) algorithm was used to build the models of the functions in 

(6.1). The NN algorithm captures and represents the non-linear and complex relationships 

between the input and output variables [110]. In this research, a supervised, back-

propagation neural network was used. The input data was presented to the network 

repeatedly. With each presentation, the final output was improved by calculating the error 

between the output and the desired output, and the result was used as feedback to the 
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network to adjust the weights. The complex and non-linear relationship between input 

and output can be modeled with good accuracy [111].  A graphical representation of a 

neural network is shown in Figure 6.2.  
 
 
 

 

Figure 6. 2. Block diagram of a neural network  
 
 
 

Three models, airflow rate, effluent CBOD, and effluent TSS, were built with 

neural networks. For each model, 200 neural networks were trained with one hidden layer 

and the number of neurons between 3 and 30. The Broyden–Fletcher–Goldfarb–Shanno 

(BFGS) algorithm [28] was used to minimize the sum of the squares (SOS) cost function 

in building each network. The iden112y function, logistic sigmoid function, hyperbolic 

tangent function, negative exponential function, and the standard sine function were 

selected as hidden and output activation functions. Details of the best performing neural 

networks are presented in Table 6.3. 
 
 
 

Table 6.3. Multiple layer perceptron neural networks 

Model 
NN 

Structure 
Training 

Algorithm 
Error 

Function 
Hidden 

Activation 
Output 

Activation 
Airflow rate 3-9-1 BFGS 48 SOS Tanh Exponential 

Effluent COBD 5-21-1 BFGS 38 SOS Logistic Exponential 
Effluent TSS 5-8-1 BFGS 15 SOS Tanh Tanh 
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Figures 6.3 through 6. 5 compare the first 50 observed values (from dataset 2) and 

the predicted values of the airflow rate, the effluent CBOD, and the effluent TSS 

concentration. The trend of airflow rate was predicted well, and the predicted values and 

the observed values are close to each other. The models derived from the hourly data 

were accurate. Most predicted values of the effluent CBOD were greater than the 

observed values. Since most of the collected data were around 4 mg/L, sharp peaks can 

cause significant errors in the NN model. The pattern of the effluent TSS concentration 

was predicted well, and gaps existed between the observed and predicted values for the 

low values of the COBD. However, the prediction error for the peak values was small, as 

shown in Figure 6.5. Due to the fact that the maximum pollutant concentration in the 

effluent is regulated, this model was useful because of its accurate predictions of peak 

values. The accuracies of the predicted results are presented in Table 6.4. The MAE, 

MSE, and SD of the airflow model were large because the observed values were large. 

The metrics indicated that the accuracy of the prediction of effluent CBOD was better 

than the accuracy of the prediction of effluent TSS. 
 
 
 

 

Figure 6.3. Airflow rates observed and predicted by the neural network model 
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Figure 6.4. Effluent CBOD concentrations observed and predicted by the neural network 
model 

 
 
 

 

Figure 6.5. Effluent TSS concentrations observed and predicted by the neural network 
model 
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Table 6.4. Accuracies of the predictions of the three models 

 MAE  MSE  SD 

Airflow rate 398.12 

scfm 

215,087 

scfm2 

240.30 scfm 

Effluent CBOD  0.18 mg/L 0.17 mg2/L2 0.38 mg/L 

Effluent TSS 0.86 mg/L 0.99 mg2/L2 0.51 mg/L 

 
 
 

6.4 Multi-objective optimization 

6.4.1 SPEA 2 optimization algorithm 

In this work, Strength Pareto Evolutionary Algorithm 2 (SPEA2) was used to 

solve the multi-objective optimization problem formulated in (1). The SPEA2 proposed 

by Zitzler and Thiele [113] has been used extensively in optimization due to its improved 

performance. The pseudo code of the algorithm SPEA2 is shown next. 

SPEA 2 Algorithm  

1:  Initialize population P 

2:  Create empty external archive E = Ø; Set t=0 

3:  for t =0 to max iteration do 

4:  Calculate fitness values of individuals in Pt and Et 

5:  Copy all non-dominated individuals in in Pt and Et to Et+1 

6:  Use the truncation operator to remove elements from Et+1 when the 

capacity of the file has been exceeded 

7:  If the capacity of E’ has not been exceeded, use dominated individuals in 

Pt and Et to fill Et+1 

8:  If t ≥ max iteration or some other stopping criterion is satisfied, set output 
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to the set of decision vectors represented by the non-dominated individuals in Et+1. 

Stop. 

9:  Perform binary tournament selection with replacement on Et+1 to fill the 

mating pool 

10:  Apply crossover and mutation to the mating pool. Increase t = t + 1 

11:  End for 

12:  End procedure 

The control parameters of the SPEA2 algorithm must be tuned for it to achieve its 

best performance. In this research, the population size P was set to 100. The ratio 

between the archive size and the population size was set to 0.5 to provide an adequate 

selection pressure for the elite solutions. The mutation operator was selected as 0.5 for 

global search and 0.1 for local search. The maximum iteration number was set to 200.  

 

6.4.2 Problem formulation 

The variables of the model (6.1) were constrained according to the operational 

practice at WRF. The lower and upper limits of the DO concentration were 1.0 and 6.5 

mg/L, respectively. To safely operate the activated sludge process and avoid the death of 

microorganisms due to insufficient oxygen, a DO concentration of 2.0 mg/L, a value that 

is maintained in most activated sludge processes, was used as the lower limit. The airflow 

rate was constrained to the range of 18,000 to 50,000 scfm, and the maximum limits of 

the effluent CBOD and TSS were 25 mg/L and 30 mg/L, in compliance with 

environmental regulations.  

The number of possible solutions to a multi-objective optimization problem could 

be infinite. A set of these non-dominated solutions forms the Pareto front. Each solution 

on the Pareto front represents an optimal solution with different trade-offs in satisfying 

different objectives. In this research, the weighted sum approach was used to consider 
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three optimization scenarios involving different scenarios of energy savings and effluent 

quality. The final multi-objective optimization model is formulated in (6.2). 

                                  1 1 2 2 3 3min( )w y w y w y+ +                    

subject to: 

2.0 6.5x≤ ≤  

                       118000 50000y≤ ≤                    

2 25y ≤  

3 30y ≤                                                            (6.2) 

where 1w , 2w , and 3w  are the weights for objectives1y , 2y  and 3y , respectively. The 

values assigned to the weights and the meanings of all of the scenarios are presented in 

Table 6.5.  
 
 
 

Table 6.5. Description of three optimization scenarios 

Scenario 
Energy 
Weight 

Effluent 
CBOD Weight 

Effluent TSS 
Weight 

Description 

1   1 1w =     2 0w =     3 0w =    Energy savings preferred 

2  1 0.5w =    2 0.25w =    3 0.25w =  Equal importance of energy 
savings and effluent quality 

3   1 0w =    2 0.5w =     3 0.5w =    Effluent quality preferred 

 
 
 

6.4.3 Results and discussion 

To solve the multi-objective optimization model in (6.2), two control strategies 

were tested in this research. Strategy A maintained the hourly DO concentration constant 

for a day. This was beneficial for older WWTPs equipped with constant speed blowers. 

By adjusting the arrangement and the number of blowers, the total airflow rate to the 

aeration tanks changes. In newer WWTPs, variable frequency drives are used to control 
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the blowers. Strategy B was suitable for applications in which hourly DO values can be 

controlled. In strategy B, the blowers were adjusted hourly based on the hourly computed 

DO concentrations.  

To reduce the computation time when solving the multi-objective optimization 

model, data points collected over a seven-day period were considered in this work, i.e., 

168 data points for the airflow rate and DO concentration, and seven data points for the 

effluent CBOD and TSS concentration. Figures 6.6 through 6.9 and Figures 6.10 through 

6.13 illustrate the optimization results for Scenario 1 with Strategies A and B, 

respectively. It can be seen that the airflow rate was reduced significantly by controlling 

the optimal setting of the DO concentration at a constant value or at hourly-adjustable 

values. In this scenario, the DO concentration was optimized as low as possible with 

preference given to saving energy. Some DO concentrations with Strategy B were 

optimized to the lower bound, i.e., 2.0 mg/L. On the other hand, the concentrations of 

CBOD and TSS in the effluent pollutant reach high values, approaching their upper limits 

(as shown in Figures 6.9 and 6.13).   

The optimization results of Scenario 2 with Strategy B are shown in Figures 6.14 

through 6.17. The optimized airflow rate also was reduced significantly compared to the 

original observations. The lower optimal DO concentration was close, but it did not reach 

the defined lower limit (shown in Figure 6.15), which leaves extra room for operational 

safety. The resulting concentrations of CBOD and TSS increased in the effluent, but the 

peaks are not as high as in Scenario 1.  
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Figure 6.6. Observed and optimized airflow rates for Scenario 1 of Strategy A 
 
 
 
 

 

Figure 6.7. Observed and optimized DO concentrations for Scenario1 of Strategy A 
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Figure 6.8. Observed and optimized effluent CBOD concentrations for Scenario 1 of 
Strategy A 

 
 
 
 

 

Figure 6.9. Observed and optimized effluent TSS concentrations for Scenario 1 of 
Strategy A 
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Figure 6.10. Observed and optimized airflow rates for Scenario 1 of Strategy B 
 
 
 
 

 

Figure 6.11. Observed and optimized DO concentrations for Scenario 1 of Strategy B 
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Figure 6.12. Observed and optimized effluent CBOD concentrations for Scenario 1 of 
Strategy B 

 
 
 
 

 

Figure 6.13. Observed and optimized effluent TSS concentrations for Scenario 1 of 
Strategy B 
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Figure 6.14. Observed and optimized airflow rates for Scenario 2 of Strategy B 
 
 
 

 

 

Figure 6.15. Observed and optimized DO concentrations for Scenario 2 of Strategy B 
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Figure 6.16. Observed and optimized effluent CBOD concentrations for Scenario 2 of 
Strategy B 

 

 
 
 

 

Figure 6.17. Observed and optimized effluent TSS concentrations for Scenario 2 of 
Strategy B 

 
 
 

The airflow rate changes for the three scenarios are presented in Table 6.6. In 

general, Scenario 1 saved more energy than the other two scenarios when energy savings 

were preferred. For Scenario 1, the energy savings were 13% and 16% for Strategies A 
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and B, respectively. If the preference were assigned to the effluent quality, it would 

consume more energy, as shown in Scenario 3. Energy savings of 9% or 10% were 

achieved when equal importance was assigned to energy saving and effluent quality. In 

addition, Strategy B had a lower airflow need than Strategy A for all of the different 

scenarios. It is reasonable that the DO concentration varied over a larger range if it were 

adjustable hourly as opposed to being a constant throughout the day. 
 
 
 
Table 6.6. Reductions in airflow rate requirements for Scenarios 1, 2, and 3 

Airflow Rate Reduction Scenario 1  Scenario 2  Scenario 3 

Strategy A 13% 9% -5% 

Strategy B 16% 10% -7% 

 
 
 

Based on the presented results, Scenario 2 with Strategy B is recommended 

because it saved energy while it maintained effluent quality at an acceptable level. 

Compared with Scenario 1 in which the use of energy by the activated sludge process 

was minimized without considering the effluent quality, Scenario 2 took less risk of 

microorganisms dying because of insufficient airflow or of effluent pollutants exceeding 

the established upper limits. If the effluent quality was the main concern, Scenario 3, 

which minimized the pollutant concentration in the effluent, may be considered. 

In this work, energy efficiency of the activated sludge process in a wastewater 

treatment plant was optimized with a data-driven approach. Two objectives were 

considered, i.e., minimizing the energy use and maximizing the effluent quality. 

Industrial data were collected at a wastewater treatment plant and used to build the 

models by neural networks. The model of airflow rate, representing energy use, was built 

with controllable variable DO concentration and uncontrollable variables, including 
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influent flow rate and return sludge rate. The models of effluent CBOD and TSS 

concentration, indicating the effluent quality, included the average DO concentration as a 

controllable variable and influent flow rate, return sludge rate, temperature, and pH 

values as uncontrollable variables. The model of airflow rate was highly accurate, and the 

models of the effluent CBOD and TSS had acceptable accuracy. The evolutionary 

algorithm was used to find the optimal DO concentration that minimized energy use and 

effluent pollutant concentration.  

Two control strategies, constant and hourly variable DO concentrations, were 

investigated to find the optimal DO concentrations for three different scenarios 

representing the preference over energy saving or effluent quality. The computational 

results indicated as much as 16% of the energy used in the process could be saved when 

preference was given to energy saving. A scenario that gave equal importance to energy 

saving and effluent quality was recommended to safely operate the activated sludge 

process. It could save 10% of the energy consumed with hourly-variable, optimal DO 

concentrations.  

The results presented in this work indicated that optimization of DO concentration 

was a useful approach for optimizing the energy efficiency of the activated sludge 

process in a wastewater treatment plant. Based on the preference of individual WWTPs, 

different scenario with different control strategies could be implemented to achieve the 

desired optimization objective.   
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CHAPTER 7 

OPTIMIZATION OF BIOGAS PRODUCTION PROCESS 

7.1 Introduction 

Sludge is a byproduct in wastewater treatment process and is suitable for biogas 

production. Anaerobic digestion of sludge involves a process in which microorganisms 

break down biodegradable waste in the absence of oxygen [114, 115]. As a result of 

anaerobic digestion, biogas and carbon dioxide rich biogas are produced. The biogas can 

then be used to generate electricity or heat.    

Biological, chemical, and physical reactions are involved in biogas production 

process [116]. Due to the complexity of the process building formal models is a 

challenge. The models presented in literature are usually nonlinear and non-stationary 

with restrictive assumptions that may not hold in practice [117].  

Numerical studies on comprehensive biogas production models for prediction and 

optimization [118-120] have been reported in the literature. Data-mining algorithms such 

as neural networks have shown success in building models of the biogas production 

process. An adaptive neuro-fuzzy inference system was applied for modeling anaerobic 

digestion of primary sludge in a wastewater treatment plant [121]. The model 

satisfactorily predicted effluent volatile solid and biogas yield. Holubar et al. [122] used 

several feed-forward back propagation neural networks to model and subsequently 

control biogas production in anaerobic digesters. Gas composition, biogas production 

rate, pH, volatile suspended solids and other parameters were measured and simulated to 

determine the best feeding profile.  

Data mining is a powerful tool to analyze data in scientific and engineering 

applications, such as bioinformatics, manufacturing, and wind energy [123-126]. 

Evolutionary computation algorithms are widely used to solve complex, linear and 
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nonlinear optimization problems. Successful applications of evolutionary computation 

algorithms have been reported in engineering, marketing and science [127-129].  

In this work, biogas production is optimized with a data-driven model derived by 

a multi-layer perceptron (MLP) neural network. Process temperature, total solids, volatile 

solids, and pH value are selected as controllable variables for the model. The 

uncontrollable variables include sludge flow rate, organic load, and detention time. To 

maximize biogas production, particle swarm optimization (PSO) is employed to find 

optimal solutions for control variables and other uncontrollable variables. The model and 

the optimization results are then discussed in detail.  

7.2 Data description 

The data used in this work was collected at the Des Moines Wastewater 

Reclamation Facility (WRF), located in Des Moines, Iowa. WRF is designed to recycle 

wastewater from 16 municipalities, counties, and sewer districts.  

The WRF includes three complexes to process sludge and produce biogas. Each 

of the complexes has 2 anaerobic digesters that are 115 ft (35.05 m) in diameter, 29.5 ft 

(8.99 m) for side water depth and 15 ft (4.57 m) for cone depth. The sludge is delivered 

to the digesters after being mixed in sludge-blending tanks. The temperature in the 

digester is kept in a range from 90°F (32.22°C) to 105°F (40.56°C) and is controlled by a 

sludge heat exchanger. The temperature is generally maintained at 100°F (37.78°C). In 

the absence of oxygen, microorganisms break down sludge and produce biogas and 

carbon dioxide, which is first stored in a gas sphere with 141,260 cubic feet (4000 m3) of 

capacity to meet peak usage demand, and then are delivered to gas generators to produce 

electricity. The heat generated in the gas combustion is used to maintain the temperature 

of the sludge heat exchangers and also heat plant buildings in the winter season. A flow 

chart diagram of the anaerobic digestion at WRF is shown in Figure 7.1.  
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Figure 7.1. Flow chart of anaerobic digestion 
 
 
 
 

The biogas production data used in this work was from daily samples taken over 

the period from 1/2/2008 to 12/31/2010. As some data points involved errors, e.g., out of 

range values, the dataset was preprocessed. The processed dataset included 724 data 

points and it was divided into training and test sets. The training set was from 1/2/2008 to 

3/31/2010, and it included 576 data points to build the prediction model. The test set from 

4/1/2010 to 12/31/2010 contained 148 data points and it was used to test the developed 

model. The dataset descriptions are provided in Table 7.1.  
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Table 7.1. Dataset description 

Dataset Description No. of instances 

1 
Training dataset: building prediction 
model 

576 observations 

2 Test dataset: testing prediction model 148 observations 
 Total dataset: 724 data points 724 observations 
 
 
 

Although the original dataset included 11 parameters, some of them were 

removed because as they did not have obvious influence on the biogas production. In this 

research, digester temperature, volatile solids, total solids, detention time of sludge, pH 

value and biogas production were selected to build a prediction model. At WRF, digester 

temperature and volatile solids fraction are controllable, and other parameters are 

uncontrollable variables. The list of parameters with their ranges is shown in Table 7.2.  
 
 

 
Table 7.2.  List of parameters 

Variable Variable Name Unit 
x1 Temperature °C 
x2 Total solids % 
x3 Volatile solids % 
x4 pH  number 
u1 Sludge flow rate m3/day 
u2 Organic load kg/m3 
u3 Detention time day 
y Biogas production m3/day  

 
 
 

The biogas production model involving the selected parameters is expressed in 

equation (1). 

1 2 3 4 1 2 3( , , , , , , )y f x x x x u u u=                                                            (7.1) 

Temperature is the most important variable affecting the rate of digestion and 

biogas production. Even though anaerobic microorganism communities can endure 
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temperature ranging from below freezing to above 135°F(57.22°C), they thrive best at 

temperatures from 68°F (20°C) to 105°F (40.56°C) for mesophilic and 113°F (45°C) to 

135°F (57.22°C) for thermophilic. To increase biogas production, the digester must be 

kept at a consistent temperature, as rapid changes will disturb bacterial activities. This is 

also the reason why most anaerobic digesters require some level of insulation or heating 

which will generally increase biogas production in cold seasons. 

The total solids in wastewater is another variable influencing biogas production. 

The concentration of total solids has an impact on the effectiveness of the 

microorganisms in the decomposition process during anaerobic digestion. Igoni et al. 

[130] found that biogas production increased when the percentage total solids of waste 

increased. A statistical analysis showed that the former was a power function of the latter, 

and there was a point where no further increase in the biogas production would be 

obtained when the percentage of total solids kept increasing.  

The volatile solids in wastewater is measured as the total solids, excluding the ash 

content, as obtained by complete combustion of the feeding waste. It contains the 

biodegradable volatile solids and refractory volatile solids. The former is useful in 

estimation of the biodegradability of the waste and the latter is not easily degraded by 

microorganisms, so volatile solids concentration affects both biogas production and the 

composition quality.  

Detention time is a critical element in control of anaerobic process. As the biogas 

formers are slower to grow and are sensitive to changes in the operation conditions, a 

short detention time results in sludge being washed out of the digester. A longer detention 

time allows the creation of a buffering alkalinity to form and stabilization of the 

microorganism environment.  

Anaerobic microorganisms, especially methanogens, are sensitive to pH in the 

digester and their growth can be inhibited by acidic conditions. The pH value for 

anaerobic digestion usually varies between 5.5 and 8.5. At an early stage of digestion, 
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acetogenesis can lead to accumulation of large amounts of organic acids resulting in an 

acidic environment with a low pH value. When digestion reaches the late methanogenesis 

stage, the concentration of ammonia rises and the pH value may exceed 8.  

 

7.3 Model building and validating 

The multi-layer perceptron (MLP) neural network involves multiple fully 

connected layers. Except of the input nodes, each node is a neuron with a 

nonlinear activation function. MLP utilizes a supervised learning mechanism, called back 

propagation, for training. MLP is a modification of the standard linear perceptron able to 

distinguish data that is not linearly separable [131].  

Dataset 1 and dataset 2 of Table 7.1 were used to train and test the MLP neural 

network model. In all, 2000 single hidden-layer neural networks were trained. The 

number of neurons in the hidden layer varied from 3 to 22. Table 7.3 summarizes the best 

performing neural networks.  To measure the model accuracy, the sum of squared error 

(SSE) is used in this research. The SSE is the sum of the squared difference between the 

target and actual output values on each output unit [108]. The Broyden–Fletcher–

Goldfarb–Shanno (BFGS) algorithm was used to minimize SSE while building each 

neural network model. The iteration number of the BFGS algorithm ranged between 18 

and 83 as shown in the 3rd column in Table 7.3. Multiple nonlinear hidden and output 

activation functions, including identity, logistic, tanh, and exponential, were used for the 

neurons. The activation functions used in the models are listed in Table 3. The MLP 

neural networks successfully identify the nonlinear relationship between the process 

variables as demonstrated with the low validation errors shown in Table 7.3.  
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Table 7.3.  MLP neural networks 

MLP 

Structure 
Validation 

Error 
Training 

Algorithm 
Error 

Function 
Hidden 

Activation 
Output 

Activation 
MLP 5-4-1 0.0055 BFGS 44 SSE Tanh Logistic 

MLP 5-3-1 0.0057 BFGS 32 SSE Tanh Logistic 
MLP 5-10-1 0.0058 BFGS 83 SSE Tanh Identify 
MLP 5-11-1 0.0059 BFGS 18 SSE Logistic Logistic 

MLP 5-22-1 0.0058 BFGS 44 SSE Tanh Sine 
 
 
 

As illustrated in Figure 7.2, the MLP neural network successfully predicts biogas 

production based on input variables. It implies MLP neural network learns the 

relationship between the input variables to the digester and the output biogas production. 

Most biogas production patterns and peaks are clearly recognized by the model built, 

except of the data points 70 and 110 with the smallest and the largest values. Prediction 

accuracy of these two points and that of their neighbors is low, likely due to noise in the 

data.  
 
 

 

 
 

Figure 7.2. Observed and neural network model predicted biogas production 
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Performance of the MLP neural network derived model has been compared with 

other four data-mining algorithms, classification and regression tree (C&RT), random 

forest, k-nearest neighbor (KNN) and support vector machine (SVM). These algorithms 

can be used for classification and regression analysis. By assigning the proper value for 

the object to be the average of the values of its k nearest neighbors, KNN can be applied 

for regression. Training the SVM model on a dataset, the function dependence of the 

dependent variable on a set of independent variables can be estimated for regression 

problems. Figure 7.3 to 7.6 show the observed and predicted biogas production by 

C&RT, random forest, KNN and SVM.  
 
 
 

 

 
Figure 7.3. Observed and C&RT model predicted biogas production 
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Figure 7.4. Observed and random forest model predicted biogas production 

 
 
 

 

 
Figure 7.5. Observed and KNN model predicted biogas production 
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Figure 7.6. Observed and SVM model predicted biogas production 

 
 
 

The comparative results in Table 7.4 demonstrate that the prediction model built 

by the MLP neural network offers better prediction accuracy than the other models. 

Specifically, the mean absolute percentage error of the constructed model is 0.07. This 

error expresses the relative accuracy of the model. Fractional bias at 0.00 indicates a 

satisfactory agreement between the predicted and the observed value. The root mean 

square error of the model is 68,302, which is a large number. However, the value of the 

biogas production could be larger than 28,317 m3/d. A relatively small difference 

between predicted and observed value will cause a large root mean square error. 

Normalized mean square error expressing the normalized average of the square error is 

0.01 for the built model. The index of agreement of 0.99 indicates a high correlation 

between the predicted and observed values. The direct comparison of PE and FB among 

all five data-mining algorithms can be seen in Figure 7.7.  
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Table 7.4. Performance metrics 

 PE FB RMSE NMSE IA 
NN 0.07 0.00 68,302 0.01 0.99 

C&RT 0.15 0.08 139,378 0.04 0.99 
Random forest 0.10 0.01 86,836 0.01 0.99 

K-nearest 
neighbor 

0.12 0.01 110,666 0.02 0.99 

SVM 0.13 0.04 110,898 0.02 0.99 
 
 
 

 

 

 

 

 

 

 

 
Figure 7.7. Comparison among five algorithms 

 
 
 

According to above results and analysis, the MLP neural network model performs 

better than models built by the remaining four data-mining algorithms. Therefore, MLP 

neural network has been selected to optimize the biogas production process.  
 

7.4 Optimization of the biogas production 

7.4.1 Problem formulation 

The model trained by the MLP neural network was used to construct the 

optimization model. To optimize the biogas production process, the single objective can 

be expressed as a function of control variables. According to the operation conditions at 
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WRF, the digester temperature was constrained from 32.22°C to 40.56°C, the total solids 

was constrained between 2% and 12%, the volatile solid fraction was constrained from 

65% to 85%, and the pH value was constrained between 6.8 and 8.0. The single 

optimization problem can then be presented in (7.2): 
   

1 2 3 4, , ,
1 2 3 4 1 2 3( , , , , , , )max

x x x x
f x x x x u u u               

    subject to: 
                                                132.22 40.56x≤ ≤  

                                                    22% 12%x≤ ≤     

                                                  365% 85%x≤ ≤           

46.8 8.0x≤ ≤                                             (7.2) 

where f is the function in Eq. (7.1) and refers to the model built in Section 3. The 

descriptions of the seven input variables of model (7.2) are shown in Table 7.1. 

Solving the complex biogas production model with mathematical programming 

algorithms is a challenge. Heuristic search algorithms like greedy search [132], and 

evolutional algorithms like genetic algorithm [133], are good choices for solving complex 

models.  In this chapter, the standard PSO algorithm was applied in this research to solve 

model (7.2). The standard PSO algorithm is presented next. 

Step 1: Randomly initialize n particle positions n
id R∈  and velocities n

iv R∈ . 

Step 2: Evaluate fitness value if  using current particle positions. 

           If b
i if f≤ , then b

i if f= , b
i ip d=  

           If g
if f≤ , then g

if f= , g
ip d=  

Step 3: Update all particle velocities iv  

           1 1 2 2( ) ( )g
i i i i iv v c r p d c r p d= + − + −  

Step 4: Update all particle positions id  

            i i id d v= +  

Step 5: Update fitness valuebif  and gf  

Step 6: If the stopping condition is satisfied, then gf is the final optimal solution with the 

particle position gp . Otherwise, return to step 3 to start next iteration. 
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Here, the dimension for each particle’s position id  and velocity iv is 4. Parameter

b
ip is the best individual particle position, and gp is the best global position. 1c  and 2c are 

cognitive and social parameters, they are set as 2 in this research. 1r  and 2r are random 

numbers between 0 and 1. Figure 7.8 shows the flow chart diagram of the PSO algorithm. 
 
 
 

 
Figure 7.8. Flow chart diagram of the PSO algorithm 

 
 
 

7.4.2 Results and discussion 

The test set was used to solve model (7.2) with the PSO algorithm.  In each 

iteration, the trained MLP neural network is used to predict the biogas production based 

on controllable and uncontrollable variables. Then the PSO algorithm determines the best 

fitness value (here biogas production) by determining the settings of controllable 
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variables. The initial parameters of the PSO algorithm are as follows: the population size 

is 50 and the maximum number of iterations is set at 20.  

To obtain a stable production of biogas, unchanged operational conditions for a 

period of time is preferable, e.g., a full season. The optimal setting is used for all the time 

in this period. The optimal value of each controllable variable is first investigated 

separately, i.e., only one variable is optimized each time. The optimal value of process 

temperature is found as 39.0 °C (see Figure 7.9 for the optimization results). Under the 

operational condition in which process temperate is set to 39.0 °C, the biogas production 

can be improved by 5.3%. The increased biogas production is due to the optimization of 

controllable setting based on the prediction model in Eq. (7.1). It can be seen that the 

computed biogas production is usually larger than the observed values. Moreover, the 

production for the test period shows less variability than the actual values, which have 

very large differences on a daily basis. The stable output is beneficial for the biogas 

production process and plant operations.  
 
 
 
 

 
 

Figure 7.9. Observed and optimized biogas production under optimal temperature setting 
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Biogas production at different total solids concentration is also investigated. As 

shown with the dotted line in Figure 7.10, biogas production is increasing with the raise 

of the total solids concentration from 2% to 12%. However, Table 7.5 illustrates that the 

biogas production decreases when total solids concentration is less than 5%. This is due 

to the average value of total solids concentration in the test dataset being around 5%. 

When total solids concentration is larger than 6%, biogas production is rising until it 

reaches the maximum value for the total solids concentration reaching its upper 

constraining limit. 
 
 
 

 
Figure 7.10. Biogas production with total solids concentration 

 
 
 

It is observed that the increase slows down as total solids concentration becomes 

larger. The relationship between biogas production and total solids concentration can be 

fitted with the power function in (7.3) (the solid line in Figure 7.5).  
bTSay )(*=                                        (7.3) 

where y is the biogas production, TS is total solids concentration, a and b are constants of 

the power function. Here, a and b are computed as 8.302×107 and 0.1378, respectively. 
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The value of power coefficient b is much smaller than the value obtained by Igoni et al. 

(2007) which was 2.77. The authors believe that the value of the power coefficient 

calculated in this research is more reasonable. Figure 7.5 illustrates the relationship 

between the rate of biogas production and total solids concentration. Equation (7.3) 

indicates that if the power coefficient is smaller than 1, total solids concentration does not 

significantly increase biogas production. The sludge will become more acidic with higher 

total solids concentration (Itodo and Awulu, 1999). 
 
 
 

Table 7.5. Biogas production change rate in the total solids concentration 

Total solids concentration (%) Change rate (%) 
2 -9.4 
3 -6.3 
4 -3.4 
5 -0.7 
6 1.8 
7 4.0 
8 6.0 
9 7.8 
10 9.4 
11 10.8 
12 12.1 

 
 

 

It has been determined from this model that the biogas production reaches its 

maximum for the total solids concentration of 12%. Figure 7.11 shows the results of 

biogas production for the optimized total solid concentration. The total biogas production 

can be increased up to 12.1%. The biogas production varies in response to the sludge 

flow rate and other input variables. However, this variability is small which implies 

stabile biogas output. The biogas production with the total solids concentration higher 

than 12% is also studied, even though this concentration is outside the range of the WRF 

operating conditions. It has been found that the biogas production increases 17% when 
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the total solids concentration is 20%. Due to the relatively small data sample, the 

accuracy cannot be validated; however, it is expected that there is a certain point at which 

the biogas production will not increase even as the total solids concentration gets higher. 

A possible reason is the decrease of the water content in the sludge, with the higher total 

solids concentration resulting in a reduced level of active microorganism-digesting 

activities.   
 
 
 

 
 
Figure 7.11. Observed and optimized biogas production under optimal total solids setting 
 
 
 

It has determined the optimal pH value of 6.8. Given this operations condition, 

biogas production increased 1.9%. As shown in Figure 7.12, biogas production has 

increased compared to the biogas production under original sampled pH values. This 

proves that pH in the range 6.8 to 8.0 has a slight impact on biogas production. Figure 

7.13illustrates the impact of pH on biogas production. A slight decrease of biogas 

production at higher pH values is observed.  
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Figure 7.12. Observed and optimized biogas production for pH value of 6.8 

 
 
 
 

 
Figure 7.13. Biogas production with pH values 
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Table 7.6. Biogas production change rate in pH values 

pH value Rate of change (%) 

6.8 1.9 
6.9 1.0 
7.0 0.86 
7.1 0.70 
7.2 0.54 
7.3 0.38 
7.4 0.21 
7.5 0.05 
7.6 -0.11 
7.7 -0.29 
7.8 -0.45 
7.9 -0.63 
8.0 -0.79 

 
 
 
 

Table 7.6 indicates that biogas production decreases when pH value is larger than 

7.6. This could be due to the fact that the average pH value of the test dataset is 7.53. It is 

also illustrated that pH has a small impact on biogas production across the range [6.8 - 

8.0]. The maximum biogas production is obtained for pH value of 6.8, which is in the 

recommended range for anaerobic digestion operations. It is worth to clarify that pH 

might contribute to failures affecting the digestion process when its values are below 6.0 

or above 8.0. For values smaller than 6.0, more acidic or basic mixtures ferment at lower 

speeds. The introduction of new sludge reduces the pH level. Digestion will stop or slow 

down until the microorganisms have neutralized the acids. High pH values encourage 

production of acidic carbon dioxide to neutralize the mix. 

The PSO algorithm has determined that the optimal volatile solids is 75%. Given 

this operations condition, biogas production has increased 0.4%. The results imply that 

volatile solids has small impact on biogas production when it is in its lower and upper 

limits.  
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In the case that all controllable variables are optimized simultaneously, a 20.8% 

biogas production increase can be obtained as shown in Figure 7.14. This is an ideal 

situation as not all variables can be adjusted at the same time in wastewater treatment 

plant operation practice. The optimal values for all variables and the increases of biogas 

production are summarized in Table 7.7. “NA” means not being optimized in that case.  
 
 
 

 

 
 

Figure 7.14. Observed and optimized biogas production under optimal settings of all 
variables 

 
 
 

 
Table 7.7. Biogas production increasing rate with optimal settings 

 Temperature 
(°C) 

Total solids 
(%) 

Volatile solids 
(%) 

pH Increasing 
rate (%) 

1 39.0 NA NA N/A 5.3 
2 NA 12 NA N/A 12.1 
3 NA NA 75 N/A 0.4 
4 NA NA NA 6.8 1.9 
5 39.2 12 80 6.8 20.8 
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CHAPTER 8 

CONCLUSION AND FUTURE WORK 

8.1 Conclusion 

As the wastewater treatment process is complex and dynamic, this dissertation is 

focused on developing a framework for its modeling and optimization with a data-driven 

approach. The framework includes two categories. The first category is modeling, where 

different data-mining algorithms and techniques are used to predict several important 

parameters in wastewater process, such as the influent flow rate, the total suspended 

solids, CBOD. The second category is optimization, where process is optimized by 

evolutional algorithms either to save energy consumption or to maximize the energy 

generation. The two categories are not separated but coupled together. The predicted 

values in the first category will be used as one input in the optimization in the second 

category. 

First, the influent flow is forecasted with two data-driven neural networks. To 

satisfy the spatial and temporal characteristics of the influent flow, rainfall data collected 

at 6 tipping buckets, radar data measured by a radar station and historical influent data 

were used as model inputs. The static MLP neural network provided good prediction 

accuracy up to 150 min ahead. To extend the time horizon of predictions, to 300 min, a 

dynamic neural network with an online corrector was proposed. The time lag appeared in 

MLP neural network model was significantly reduced. The extended time horizon is 

useful for energy efficiency management of WTTPs. 

Second, data-mining algorithms are applied to predict TSS in wastewater. 

Numerous scenarios involving carbonaceous biochemical oxygen demand (CBOD) and 

influent flow rate were investigated to construct the TSS time-series. The multi-layered 

perceptron (MLP) model performed best among the five different data-mining models 

that were derived for predicting TSS. The accuracy of the predictions was improved 
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further by an iterative construction of MLP algorithm models. The values of TSS were 

predicted seven days in advance with accuracies that ranged from 73% to 79%. 

And numerous models predicting carbonaceous biochemical oxygen demand 

(CBOD) is also investigated in Chapter 4. The performance of individual seasonal 

models was found to be better for fall and winter seasons, when the CBOD values were 

high. For low CBOD values, the modified seasonal models were found most accurate. 

Predictions for up to five days ahead were performed. The reason for the low accuracy of 

some of the models presented in the research was the low frequency (24 h) of the input 

data. Once higher frequency data becomes available, the prediction accuracy of CBOD 

will be improved. Such data will also allow the development of accurate models for 

predicting the potential of hydrogen (pH) and the total suspended solid (TSS).  

Chapter 5 and all subsequent chapters focus on optimization of the process. In 

Chapter 5, optimization of wastewater pumping process is presented. 20 cases of different 

operating pump combinations are found through the collected dataset. To minimize 

energy consumption, a single-objective optimization model is formulated and solved with 

the proposed two-level intelligent algorithm. Based on the operation practice, decision 

variables are the number of operating pumps at the same and the rotating speed of the 

pump. The computational results revealed that a significant energy reduction was 

observed when the pumping station running under optimized optimal settings. The wet 

well level and outflow rate had not big difference before and after optimization.  

Chapter 6 focuses on the energy efficiency of the activated sludge process. Two 

objectives are considered, i.e., minimizing the energy use and maximizing the effluent 

quality. Two control strategies, constant and hourly variable DO concentrations, are 

investigated to find the optimal DO concentrations for three different scenarios 

representing the preference over energy saving or effluent quality. The computational 

results indicated as much as 16% of the energy used in the process could be saved when 

preference was given to energy saving. A scenario that gave equal importance to energy 
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saving and effluent quality was recommended to safely operate the activated sludge 

process. It could save 10% of the energy consumed with hourly-variable, optimal DO 

concentrations.  

Optimization of biogas production is presented in Chapter 7. Controllable 

variables, temperature, total solids, volatile solids, pH, and uncontrollable variables, 

sludge flow rate, organic load, and detention time were selected to build a prediction 

model for biogas production with a multi-layer perceptron neural network. To optimize 

biogas production, a single-objective optimization model is formulated and solved with a 

particle swarm optimization algorithm. The computational results demonstrated that a 

20.8% increase could be obtained when all controllable values were set to the optimal 

values at the same time. 

8.2 Future research 

The research reported in this thesis indicates that accurate prediction models 

resulting in significant energy savings can be developed. The predicted influent flow rate, 

TSS and CBOD concentration in the raw wastewater can provide useful information to 

manage the plant. The optimized settings, such as pump speed, configurations, 

temperature of the sludge, dissolved oxygen concentration in the aeration tank, etc., can 

give useful information to the plant operators to save energy or improve the biogas 

production. 

Future research should focus on implementation on the proposed framework in 

the wastewater treatment plant.  To apply the research to the wastewater industry, the 

knowledge from the research must be transferred to the treatment plant. A platform needs 

to be created with the efforts from both research and the plant.  To provide real-time 

influent flow rate information to the plant, a program must be developed to collect and 

read the upstream flow information, and output both graphical and texted predicting 

values after processing the data and modeling at the background. The similar work should 
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be executed for predicting TSS, CBOD, as well optimization of pumping process, the 

activated sludge process and maximizing the biogas production. During the 

implementation, the problems can be found and solved. These real-time experiments will 

improve the confidence of the plant to continue employ the data-driven approach to 

manage the wastewater treatment process rather than control the settings based on the 

experience. 

Another future direction is the integration of various concepts reported in this 

dissertation into a comprehensive model. The accomplished tasks cover the main 

processes in the wastewater treatment plant. It would be interesting to create an 

integration program which could show all predicted information and optimized variable 

settings with only several inputs such as upstream flow rates and local temperature, etc. A 

plant operator then could read the information and make decisions to optimally manage 

the plant.  

As the online sensors are expensive and require frequently maintenance, 

developing virtual sensors with a data-driven approach is worth to be studied in the future. 

Using virtual sensors can not only save the investment cost of the devices and high 

maintenance expenses, but also significantly decrease the noise generated by online 

sensors.  They can be also used to provide inputs to fill the missing values in the collected 

dataset, which lead to higher accuracy of the predicting models.  
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