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ABSTRACT

The primary objective of this research is to maded optimize wastewater
treatment process in a wastewater treatment Pl TP). As the treatment process is
complex, its operations pose challenges. Traditiphgsics-based and mathematical-
models have limitations in predicting the behawbthe wastewater process and
optimization of its operations.

Automated control and information technology enalglentinuous collection of
data. The collected data contains process infoamatilowing to predict and optimize
the process.

Although the data offered by the WWTP is plentifithas not been fully used to
extract meaningful information to improve performarof the plant. A data-driven
approach is promising in identifying useful pateeamd models using algorithms versed
in statistics and computational intelligence. Sssbd data-mining applications have
been reported in business, manufacturing, sciemzkengineering.

The focus of this research is to model and optirtheewastewater treatment
process and ultimately improve efficiency of WWTPs.maintain the effluent quality,
the influent flow rate, the influent pollutants inding the total suspended solids (TSS)
and CBOD, are predicted in short-term and long-tErmprovide information to
efficiently operate the treatment process. To redereergy consumption and improve
energy efficiency, the process of biogas produciativated sludge process and
pumping station are modeled and optimized with @v@hary computation algorithms.

Modeling and optimization of wastewater treatmeawntcpsses faces three major
challenges. The first one is related to the datswastewater treatment includes physical,
chemical, and biological processes, and instrumasitscting large volumes of data.
Many variables in the dataset are strongly coupléeé. data is noisy, uncertain, and

incomplete. Therefore, several preprocessing dlgos should be used to preprocess the
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data, reduce its dimensionality, and determine nmnyariables. The second challenge is
in the temporal nature of the process. Differataemining algorithms are used to obtain
accurate models. The last challenge is the optimiz@®f the process models. As the
models are usually highly nonlinear and dynamiwehevolutionary computational
algorithms are used.

This research addresses these three challengemdjbecontribution of this
research is in modeling and optimizing the wastemaeatment process with a data-
driven approach. The process model built is theémoped with evolutionary
computational algorithms to find the optimal sabat for improving process efficiency

and reducing energy consumption.
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ABSTRACT

The primary objective of this research is to maed optimize wastewater
treatment process in a wastewater treatment Pl TP). As the treatment process is
complex, its operations pose challenges. Traditiphgsics-based and mathematical-
models have limitations in predicting the behawbthe wastewater process and
optimization of its operations.

Automated control and information technology enalglentinuous collection of
data. The collected data contains process infoamatilowing to predict and optimize
the process.

Although the data offered by the WWTP is plentifithas not been fully used to
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in statistics and computational intelligence. Sssbdl data-mining applications have
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and CBOD, are predicted in short-term and long-tErprovide information to
efficiently operate the treatment process. To redereergy consumption and improve
energy efficiency, the process of biogas produciativated sludge process and
pumping station are modeled and optimized with @v@hary computation algorithms.

Modeling and optimization of wastewater treatmeawntcpsses faces three major
challenges. The first one is related to the da&tswastewater treatment includes physical,
chemical, and biological processes, and instrumasitscting large volumes of data.
Many variables in the dataset are strongly coupléeé. data is noisy, uncertain, and

incomplete. Therefore, several preprocessing dlgos should be used to preprocess the
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data, reduce its dimensionality, and determine nmnyariables. The second challenge is
in the temporal nature of the process. Differataemining algorithms are used to obtain
accurate models. The last challenge is the optimiz@®f the process models. As the
models are usually highly nonlinear and dynamiwehevolutionary computational
algorithms are used.

This research addresses these three challengemdjbecontribution of this
research is in modeling and optimizing the wastemaeatment process with a data-
driven approach. The process model built is theémoped with evolutionary
computational algorithms to find the optimal sabat for improving process efficiency

and reducing energy consumption.
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CHAPTER 1
INTRODUCTION

1.1 Motivation
To protect clean water, wastewater needs to beettdeefore discharge back to
the nature. Wastewater treatment plants (WWTPg)wevseveral different processes to

treat wastewater at different stages.

Aeration hasin

i i Secondary clarifier
Primary clarifier :

1%
Sereens
{ﬁ A = f : —» Effluent
Ve 4 — [ —
> = L = o
L _"{ - Disinfection
Raw wastewater Sediment T Air
b
. f :\ .
Primary &) Activated
sludge ¥ Blower H?z 7 sludge

= Returned sludge
=l

Sludge pump

To sludge treatment

Figure 1.1. Flow schematic diagram of a typical WRVT

A flow diagram of a typical WWTP process is showrFigure 1.1. The collected
wastewater enters the plant and passes througdtieens. The large items such as rags,
sticks are screened and are disposed later. #dteening, the influent wastewater enters
a wet well and then being pumped to primary clersi After maintaining a retention
time of 1 to 2 hours, the scum floats to the s@fabere it is removed by a skimmer.
Then the wastewater is delivered to aeration téykatermediate pumps. Process air is

provided by single-stage, centrifugal blowers td around the aeration tanks. During
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normal operation partial of the sludge from theoselary clarifiers, called returned
activated sludge (RSL), enters into aeration tdhiaugh sludge pumps. When the RSL
and the wastewater are mixed together, microorganis activated sludge use the
oxygen provided by the fine bubble diffusers lodate the bottom of the aeration basins
to break down the organic matters. The remainingged from the secondary clarifiers
and the sludge from the primary clarifiers are pathio the anaerobic digesters to
produce biogas. The liquid from the secondary fitas flows to the chlorine contact
tanks where chlorine is injected into the flow tlb kaost bacteria, and then the final
effluent is discharged to the river.

During the whole process, physical, chemical amtbigical sub-processed
involved. The process is highly nonlinear and dyieamrhe WWTPs are controlled by
experience and some small scale experimental seJiilerefore, the plants are not well
optimally operated. The energy consumed by rawewveser boosting pumps and air
blowers are partially wasted. Heavy rainfall magvhelm the plant, causing spills and
overflows due to unaccurate estimation of planuerit flow based on experience.

Therefore, modeling and optimization of wastewétestment process has been
an interest of industries and researchers. Howavsrdifficult to use traditional
methods to perform this task due to the complexramdinear nature of the process, such
as physical and mathematical based models.

With the development of the information technol@gg automated instruments,
large volume process data is recorded in WWTPs &hables another approach, data-
driven approach, to model and optimize the prockskata-driven approach is a
promising method for finding useful information dkugh the data. It is the process of
finding patterns by algorithms versed on the crmsds of statistics and computational
intelligence. Successful data-mining applicatioagenbeen reported in business and

marketing, manufacturing, science and engineering.

www.manaraa.com



With the data-driven approach, the treatment pi®cas be accurately
represented by models without solving complex ptalsand mathematical equations.
The models can be used to predict the behavidreoplant and be solved with
evolutionary algorithms to find the optimal contselttings to save energy and improve

energy efficiency.

1.2 Research objectives

The primary goal of this research is to providgstematic data-driven approach
to model and optimize the wastewater treatmentgs®cThe goal can be achieved with
the following objectives:

1) Forecast the plant influent flow based on a noway o provide useful

influent flow information to plant management.

2) Predict the total suspended solids in wastewatprdweide information to

select chemical and biological control strategy.

3) Predict CBOD in wastewater.

4) Model and optimize the wastewater boosting prot@ssduce energy

consumption by pumps

5) Model and optimize the activated sludge process\pvove the energy

efficiency

6) Model and optimize the sludge digestion procesadgimize the biogas

production.

To the author’'s knowledge, there’s no existinganpleted project that has
accomplished the above objectives. In this resednehsix objectives are accomplished
with data-mining techniques and evolutionary aldyons developed here. The model and
methods developed in this thesis can be extendeth&y industrial process problems.

In Chapter 2, the plant influent flow at a WWTRpredicted with two data-driven

neural networks. To satisfy the spatial and temipdraracteristics of the influent flow,
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rainfall data collected at 6 tipping buckets, radiaia measured by a radar station and
historical influent data are used as model inplite static MLP neural network provides
good prediction accuracy up to 150 min ahead. Terekthe time horizon of predictions,
to 300 min, a dynamic neural network with an onloerector is proposed.

In Chapter 3, data-mining algorithms are appliegregict total suspended solids
(TSS) in wastewater. Numerous scenarios involvampanaceous biochemical oxygen
demand (CBOD) and influent flow rate are investghtio construct the TSS time-series.
The multi-layered perceptron (MLP) model perfornbedt among the five different data-
mining models that are derived for predicting TSBe accuracy of the predictions is
improved further by an iterative construction of Rlalgorithm models.

In Chapter 4, numerous models predicting carbonecbmchemical oxygen
demand (CBOD) are presented. The performance ofidudhl seasonal models is found
to be better for fall and winter seasons, whenGB&D values were high. For low
CBOD values, the modified seasonal models are fonost accurate. Predictions for up
to five days ahead are performed.

In Chapter 5, a data-driven approach is preseoteabdel and optimize
wastewater pumping process to reduce pumping emesgly Data-mining algorithm,
multilayer perceptron neural network, is used tiddbilne pumping energy model. The
optimization problem formulated by integrating thedel is solved by the proposed two
level integration algorithm to find optimal pumpnégurations and pump speed settings.
Significant energy reduction is observed when tinaping station running under
optimized optimal settings.

To save energy while maintaining effluent qualayjata-driven approach for
optimization of energy efficiency of the activatddge process is presented in Chapter
6. A dataset from a wastewater treatment plansesl to formulate the objectives of the
model. The optimal concentrations of dissolved @ythat would minimize energy

consumption and effluent pollutants are determingd an evolutionary computational
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algorithm. Three scenarios with different prefeeebetween energy savings and effluent
guality are investigated.

In Chapter 7, optimization of biogas productiongass in a wastewater treatment
plant is presented. The process model is developieg routinely collected data
categorized as controllable and uncontrollablealdeis. A multi-layer perceptron neural
network is applied to construct the optimizationd®lo Optimizing single variable and all
variables are both investigated. An evolutiondgpathm is used to solve the
formulated problem.

Chapter 8 presents the conclusions and future ngdsea
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CHAPTER 2
SHORT-TERM FORECASTING OF INLUENT FLOW RATE

2.1 Introduction

The influent flow to a wastewater treatment plaht//TP) has a significant
impact on the energy consumption and treatmengsso[l]. To maintain the required
water level in a wet well, the number of raw wasteav pumps should be arranged based
on the quantity of coming influent flow. Optimarangement and scheduling of pumping
system can greatly reduce electricity usage. Thiatpats, such as total suspended solids
(TSS) and biochemical oxygen demand (BOD) in thetewaater are also correlated to
the influent flow [2]. The treatment process shdwdadjusted accordingly to the
pollutants concentrations in the influent. For epéenhigh BOD concentration requires
longer aeration time and supply of more oxygenTBlus, it is important to predict the
influent flow at future time horizons in order telivmanage the plant and control the
effluent quality.

Accurate prediction of the influent flow, however still a challenge in
wastewater industry. A WWTP usually receives waatewfrom municipal sewers and
storm waters from areas around the plant [4]. Tlentjty of the generated wastewater or
precipitation may vary across different areasalet,fto account for the influent flow to a
WWTP, spatial and temporal correlations shoulddreslered.

Several studies have focused on developing modgdeetlict the influent flow [5-
10]. Hernebringet al. [11] presented an online system for short-termesdlow forecasts
optimizing the effects of the receiving wastewafemore complex phenomenological
model has been built in [12] based on one yeaulbstale WWTP influent data .1t
included diurnal phenomena, a weekend effect, sehpmenomena and holiday periods.
Carstensest al. [13] reported prediction results of hydraulic Idad urban storm control

of a WWTP. Three models, a simple regression maategdaptive grey-box model and a
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complex hydrological and full dynamic wave modepnresented three different levels of
complexity and showed different ability to prediciter loads one hour ahead. Though

these models have taken into account temporallatioes of the influent flow, however,
they have ignored the spatial feature of the imftdtow.

The wastewater processing industry has used phlgassd deterministic models
to estimate the influent flow. Online sensors hiagen used to provide flow information
at sub-pumping stations. Based on the empirica, daich as the distance between the
sub-station and the WWTP, the sewer piping sizejrifluent flow could be roughly
estimated and calibrated by the historical daienfrove the estimation accuracy [14].
Such simple models did not fully consider temporatelations of the influent flow. In
case of large rainfalls or lack of sensors covelange areas, the predicted influent flow
may have carried a significant error.

In this work, short-term prediction (300 min aheati)he influent flow of a
WWTP is presented. To take account of the spatiapbral characteristics of the
influent flow, rainfall data measured at differéipiping buckets, radar reflectivity data
covering the entire area handled by the WWTP, hadistorical influent data to the
plant are used to build the prediction models. fEmefall data provided by tipping
buckets offers valuable precipitation measureméftsather radar provides spatial-
temporal data covering large area including thegdanot covered by the tipping buckets.
The high frequency of radar data makes them usefigrecast the rainfall several hours
ahead. The historical influent time series dataaios temporal influent information used
to predict the influent flow.

Neural networks (NNs) are used to build predictimodels in the research
reported in this research. Successful applicatbdddNs have been reported in literature
[15-20]. Kriger and Tzoneva [21] developed a NN ®ldd predict the chemical oxygen
demand of the influent. A three-layer feed forwhid has been applied to the effluent

BOD [22]. The NN models provided satisfactory potidin results.
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The remainder of the chapter is organized as faldsection 2.2 describes the
data collection, preparation and preprocessingedlsas the metrics used to evaluate
accuracy of models. Section 2.3 presents a statit-layer perceptron (MLP) neural
network which is employed to build prediction modéthe influent flow. In Section 2.4,
a data-driven dynamic neural network is proposesbtee the time lag problem
appearing in the models by the static MLP neuralvoek. The neural network structure

and the computational results are discussed.

2.2 Data collection and processing

2.2.1 Data cleaning

The plant influent flow data and other data notcdpe are collected at the
Wastewater Reclamation Facility (WRF), located esMoines, lowa, United States.
WREF operates a 97 million gallon per day (MGD) ogwil wastewater treatment plant in
southeast Des Moines, lowa. The peak influent flate can be as high as 200 MGD.
The plant was mainly constructed in the mid 1980sdat municipal wastewater and
storm water from the greater Des Moines metropokieea. The activated sludge process
is used to biologically remove organics in the wate

To build the influent flow prediction model of WRthe model inputs include
historical influent data, rainfall data and radsftectivity data. The influent flow data is
collected at 15-s intervals at WRF. It is prepreeelsto 15-min to have the same
frequency as the rainfall data.

The rainfall data was measured at six tipping btsckaue icons in Figure 2.1) in
the vicinity of WRF (red icon in Figure 2.1). As \WWReceives wastewater from a large
area, including rainfall data in the model inpuatisies the spatial characteristic of the
influent flow. Figure 2.2 shows the difference ainfall rates at these tipping buckets at

certain times. It illustrates that the rainfallasation dependent and may be very despite
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the proximity of the tipping buckets. It indicatixe importance of rainfall data to the

influent flow prediction model.

Figure 2.1. Location of tipping buckets and WRF

Rainfall (inch)

Time (15-min})

Figure 2.2. Rainfall at six tipping buckets
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The rainfall graphs in Figure 2.2 illustrate theotfs at several locations rather
than completely reflect the precipitation at enéirea covered by WRF. Therefore, the
radar reflectivity data is proposed to provide &ddal input to for influent flow
prediction. The NEXRAD-II radar data used in tresearch is from the weather station
KDMX in Des Moines, lowa, approximately 32 km fraMRF. KDMX uses Doppler
WSR-88D radar to collect high resolution data factefull 360 degree scan every 5-min
with a range of 230km and a spatial resolutionbafud 1 km by 1 km. The radar
reflectivity data has been collected at 1, 2, 8 4lkm constant altitude plan position
indication height (CAPPI). As shown in Figure 2@&flectivity may be quite different at
different heights at the same scanning time. Teaaid flocks of birds may result in
errors of radar readings. In addition, reflectivatyone height may not be able to fully
describe the storm because it occurring at diftelherghts. To deal with these issues, it is
necessary to use radar reflectivity data from diffié CAPPIs.

The radar reflectivity data at nine grid pointsreunding each tipping bucket is
selected and averaged with the center data toebeetlectivity for that tipping bucket.
Null values are treated as missing values andiléed by the reflectivity at the
surrounding gird points. The NEXRAD radar data wallected at 5-min intervals. It has
been processed to 15-min by averaging 3 radardféativity values.

Table 2.1 summarizes the dataset used in thisnesda addition to 4 historical
influent flow inputs at 15, 30, 45 and 60 min ahéadainfall and 24 radar reflectivity
inputs provide the temporal and spatial featurestime model. The data was collected
from January 1, 2007 through March 31, 2008. Tha ttam January 1, 2007 through
November 1, 2007 containing 32,697 data pointsesidor train neural networks. The

remaining 11,071 data points and is used to tespéinformance of the built models.
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Figure 2.3. Radar reflectivity at different CAPPI
Table 2.1. The data set description
Inputs Description Unit
X1-Xg Rainfall at 6 tipping buckets inch
X7-X30 Radar reflectivity at 6 tipping buckets number
at 4 CAPPI
X31-X34 Historical influent flow MGD

2.2.2 Prediction accuracy metrics

Three commonly used metrics, the mean absolute @8E), mean squared

error (MSE), and correlation coefficienf Bre used to evaluate the performance of the

prediction models (Eqg. (2.1)-(2.3)).

_ish s

i=1
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T
MSE_HZ”i y.l (2.2)

i=1

Z(fi - Yi)2

R*=1- '
Z(fi _yi)2+Z(fi _Vi)z

(2.3)

where f; is the predicted value produced by the moggis the observed valug; is the
mean of the observed value, andepresents the number of test data points.

2.3 Modeling by static multi-layer perceptron neéura

network

To build the influent flow prediction model, a stamulti-layer perceptron (MLP)
neural network was developed. The MLP neural ndtwsone of the most widely used
network topologies after its introduction 1960 [2iB]has overcome limitations of the
single-layer perceptron to handle model nonlingaRtediction and classification
applications of MLP neural networks have been rgabin science and engineering [24-
28].

The structure of the MLP neural network used inrdszarch reported in this
research is shown in Figure 2.4. It is a supervissk-propagation network with three
layers. Each layer has one or more neurons whemgerconnected to each neuron of
the previous and the next layers. The connectitwdsn two neurons is parameterized
by a weight and a bias. Different activation fuans, such as logistic, hyperbolic

tangent, identity, sine and exponential, were $etefor the hidden and output layers.
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Figure 2.4. Structure of the MLP neural network

In the MLP in Figure 2.4, the outpy is calculated as shown in Eq. (2.4)
¥ = £, fu (o xw; +b)w, +b) (2.4)

wherei denotes théineuron in tkjle inplut layerj is the |" neuron in the hidden
layer, f, and f, are the activation function for output layer andd@n layer, respectively.
W, is the weight connecting th® heuron to the"j neuron, andw,, is the weight
between the'] neuron in the hidden layer to the neuron in thpaiayer.b, andb, are
the bias for neuron j and output neuron.

The weight is calculated from Eq. (2.5) during tf@ning process so as to

minimize the target output

£(n) = %zmn) ~ y (M)’ (2.5)

wheres is the mean of square errardenotes the'hdata pointk is the K" output

neuron k equals to one in this work), represents the targeted output value.
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In total 200 MLP neural networks were trained to @generalized net structure.
The number of neurons in hidden layer varied frota 30. To improve the convergence
speed of the training process, BFGS (Broyden-Fat&oldfarb-Shanno) algorithm [29]
was used. The weights were randomly initializedveen -1 and 1 and iteratively
improved by minimizing the mean of square errohwitiérations. The algorithm would
stop when the error was smaller than the set tbtégir the number of maximum
number of iterations was reached.

The influent flow prediction model at current timeas firstly built. The dataset
described in Section 2.2 was used to train andhesvILP neural networks. The best
MLP had 25 neurons in the hidden layer with thedtig hidden activation function and
the exponential output activation function. Thecoddted MAE, MSE and correlation
coefficient were 1.09 MGD, 4.21 MGDand 0.988, respectively. These metrics indicate
that the prediction model is accurate. The firdl 80served and predicted influent flow
values from the test dataset are shown in FigureNost predicted values are very close
to the observed ones, and the predicted influemt follows the trend of the observed
flow rate.

MLP neural networks models were also built at &+in, t + 30 min, t + 60 min,

t + 90 min, t + 120 min, t + 150 min, and t + 18thnmAs shown in Figure 2.6, the
predicted influent flow is close to the observetiieaand the predicted trend is the same
as the observed one. However, a small time lagdmithe predicted and observed
influent flow appears. The lag increases fast ardbe clearly observed in Figure 2.7

which predicts the influent flow time t + 180 mihead.

www.manaraa.com



15

70.0000

.

\ ey f\\
Wi\ V[
LY \
vy

= QObserved value —— Predicted value

Influent flow rate (MGD)
s & & & 8
: 8 8 &8 &

35.0000

30.0000

1 51 101 151 201 251
Test data (15 min)
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Figure 2.6. Predicted and actual influent flowiatett + 30 min.
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Figure 2.7. Predicted and actual influent flowiatet t + 180 min

Table 2.2. Prediction accuracy

Prediction Correlation
horizon MAE (%) MSE(%) coefficient
t 1.09 4.21 0.988
t+ 15 1.48 5.83 0.983
t+ 30 1.89 8.20 0.976
t + 60 2.75 14.59 0.958
t+ 90 3.61 22.95 0.934
t+ 120 4.46 33.21 0.905
t + 150 5.26 44.88 0.872
t+ 180 6.02 57.39 0.836

Table 2.2 summarizes the accuracy results for ptieds at the current time t
through t + 180 min. The prediction accuracy desesawith increase of the time horizon.

The MAE and MSE increase fast after t + 30 minhwifite correlation decreasing as well.
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The prediction models for horizons smaller thanls6 min have acceptable accuracy if
the threshold of correlation coefficient is seB&&o. Even the trend can be well

predicted, the time lag is too large to providefulseal-time influent flow information.

2.4 Modeling by improved dynamic neural network

The computational results in Section 3 indicate tha static MLP neural network
is not able to capture the dynamics in the datskeing time horizons. To deal with this
issue and improve prediction accuracy, a dynamicaienetwork with online corrector
was proposed and tested. Successful applicatiotieafynamic neural network have
been reported in literature [30-32]. A dynamic rauetwork involves a memory and a
predictor. As the memory captures the past timesanformation, it can be used to learn
the temporal patterns of the time series by thdipter. This research used focused time-
delay neural network (FTDNN) as the predictor [33}e basic network is MLP network
as it can well handle the spatial data. The dynsm@ppears at the input layer of the
network to process the temporal information.

To address the time lag issue caused by the 8tafneural network, an online
corrector is proposed. The structure of the finadaiic neural network is shown in
Figure 2.8. The details of FTDNN are covered inlitezature, e.g., [34]. The inputs of
the prediction model included four past valuesnditient flow (as memory values), radar
reflectivity, rainfall, and the online correci(t) (Eq. 2.6) at current time t.

e(t) =y, ) -y, (1) | (2.6)

where Yy, (t) andy, (t) are the predicted and actual influent flow at coirténe t.

In fact, the online corrector provides the time ilafgprmation back to the input layer to

calibrate the prediction results during the tragniterations.
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Figure 2.8. Structure of the dynamic neural network

The approach presented in in Section 2.3 was apfaiérain the dynamic neural

network. As shown in Figure 2.9, the influent fliswvell predicted at time t +30. There

is a slight time lag. Figure 2.10 shows the prexighfluent flow and the observed values

at time t + 180 min for the dynamic and the stagtworks. It clearly shows that the time

lag of the predictions by dynamic neural networknigsch smaller than the time lag of the

prediction by static MLP neural network. MAE, MSEdacorrelation coefficient of two

neural networks are illustrated in Figure 2.1122ahd 2.13. The built prediction model

by dynamic neural network outperforms the modestayic MLP neural network. Its

MAE and MSE increase slowly with longer time horizo The correlation coefficient

decreases slowly and is still acceptable at tim&®0 min (R > 0.85).
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Figure 2.9. Predicted and actual influent flowietet t + 30 min
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Figure 2.10. Predicted and actual influent flovirate t + 180 min for two models
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The results indicate that dynamic neural networtaisable of modeling the
influent flow. Static MLP neural network is effeatiin handling complex non-linear
relationships rather than temporal time seriesti@rother hand, dynamic neural network
is suitable for temporal data processing. The entiorrector provides additional time
series information as an input to correct the tiagegenerated in the model. The
accuracy gain comes at a cost of additional contipmtéme needed to construct the
dynamic neural network.

As knowing the future values of influent flow ispmrtant for management of
WWTPs, the 300 min ahead predictions provided byreamic neural network offer
ample time to schedule the pumping system and &ifjasreatment process parameters.
However, the 150 min ahead predictions offeredneystatic MLP neural network are
acceptable in lower precipitation seasons (for gdapspring and winter) by saving

computation time.
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CHAPTER 3
PREDICTING OF THE TOTOAL SUSPENDED SOLIDS IN
WASTEWATER

3.1 Introduction

Total suspended solids (TSS) are considered tmb@bthe major pollutants that
contributes to the deterioration of water qualdyntributing to higher costs for water
treatment, decreases in fish resources, and trergeaesthetics of the water [35]. The
activities associated with wastewater treatmeritigdes control of water quality,
protection of the shoreline, and identificationegbnomic life of protective structures.
Predicting suspended sediments is important inrobhimg the quality of waste water.
TSS is an important parameter, because excess d3&es the dissolved oxygen (DO)
in the effluent water. Thus, it is imperative tooknthe values of influent TSS at future
time horizons in order to maintain the desired abgaristics of the effluent.

Industrial facilities usually measure the waterlgygarameters of their influents
two or three times a week, and the measuremeritede€BOD, pH, and TSS [36, 37].
Thus, the infrequently recorded data must be medlifdo make it suitable for time-series
analysis. Sufficient associated parameters muatagable to develop accurate TSS
prediction models. Wastewater treatment involvasmex physical, chemical, and
biological processes that cannot be accuratelyesgmted in paramedic models.
Understanding the relationships among the parasieféhe wastewater treatment
process can be accomplished by mining the histicdleti@. A detailed description of
various waste water treatment plant (WWTP) modetipgroaches is described in [38].
Their review work is mainly focused on applicatinwhite-box modeling, and artificial
intelligence to capture the behavior of numerous WANrocesses. Poch et al. [39]

developed an environmental decision support sy$ED$S) to build real world waste
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water treatment processes. In another researchskival. [40] utilized mathematical
programming approach to identify the WWTP desigrapeeters.

Data-mining algorithms are useful in wastewateeagsh. Examples of data-
mining applications reported in the literature ud# the following: (1) prediction of the
inlet and outlet biochemical oxygen demand (BODhgsnulti-layered perceptrons
(MLPs), and function-linked, neural networks (FNN%) modeling the impact of the
biological treatment process with time-delay neaetivorks (TDNN) [41]; (3)
predicting future values of influent flow rate ugia k-step predictor [42]; (4) estimation
of flow patterns using auto-regressive with exogenioput (ARX) filters; (5) clustering
based step-wise process estimation; and (5) ragfdnmance evaluation of WWTP
using artificial neural network.

In the research reported in this chapter, the amtdlow rate and the influent
CBOD were used as inputs to estimate TSS. Dueettirthtations of the industrial data-
acquisition system, the TSS values are recordegtaml or three times per week. The
data must be consistent in order to develop times@rediction models. Thus, we
established two goals for our research goals:a/tphstruct TSS time series using
influent flow rate and influent CBOD as inputs g&¢lto develop models that can predict
TSS using the TSS values recorded in the past.

The chapter is organized as follows. Section 3a¥iges details of the dataset
used in the research. In Section 3.3, the TSS sienies models are discussed. In Section
3.4, data-mining models are constructed for predict SS. The computational results

are discussed in Section 3.5.

3.2 Data preparation

The influent flow rate is calculated at 15-min mt&s, whereas influent CBOD
and TSS are measured only two or three times pek Wwased on the daily concentration

values. A five-year data record, collected from/20D5 to 12/31/2010, was available for
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the research reported in this research. To visa#ie relationship between the TSS
(output) and the influent flow rate and the influ€@BOD as inputs, scatter-point
diagrams are presented in Figs. 3.1(a)-(b). Thealves of the coefficient of
determination (r2) shown in the figures indicate@esak linear correlation between the

input and output variables (parameters).
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Figure 3.1. Relationship between TSS and inputrpaters: (a) influent CBOD,
(b) influent flow rate (daily average values)
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Thus, linear regression models are not suitabl@fedicting TSS using either the

influent flow rate or the CBOD as inputs. A nondar correlation measure, namely, the

Spearman correlation coefficient, was computed i@ 38ML). The results provided in

Table 3.1 suggest a significant non-linear corr@habetween the input and output

parameters. Based on the non-linear relationshipdsn the influent flow rate and

CBOD and TSS, non-parametric approaches were eglor

Table 3.1. Spearmasorrelation coefficients

TSS (mg/l)
Influent CBOD (mg/l) 0.5019
Influent flow rate (MGD) -0.4087

To develop accurate prediction models, data osthienst be removed. Figure 3.2

presents the box plot of TSS values with the owgthdentified. In general, the TSS

values remain between 32 mg/l and 530 mg/l). Howete outlier data points occur due

to errors in the measurements.

A normal, two-sided, outlier-detection approach wasd. In two-sided outlier

detection, values that exceed #and values that are smaller thars-8re considered to

be outliers. Almost 4% of the data points have kastermined to be outliers and

removed from the analysis. Figure 3.3 provideshitve plot of TSS after the outliers are

removed.
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Figure 3.2. Box plot of TSS values
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Figure 3.3. Distribution of TSS values after renmayvoutliers

In the next section, methods are discussed fortagrisg time-series data for

TSS.
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3.3 Construction of time-series data for TSS

Models that can approximately determine TSS vahae® been developed using
influent flow rate and influent CBOD as input paeters. First, the most relevant
parameters are selected to obtain robust modessaléo essential for the reduction of
the dimensionality of the data. Approaches forcelg parameters, such as the boosting-
tree algorithm, correlation coefficient, and pripai component analysis, are often used
for this purpose.

The frequency of the measurement of output TS®de per day, whereas the
flow rate of the influent is recorded every 15 ntesi Considering the influent flow rate
recorded in a day, the input data-dimension becdfiem the first approach for
reducing the dimensionality of the data, the bogstree parameter selection approach
and the correlation coefficient approach were ueadentify the best time of day for
estimating the values of TSS. The approach useothlesquared error computed at each
split of the input parameters. The parameter withldest split is assigned a value of 1,
and the less-preferred parameters are assigneesvaihoialler than 1. The boosting-tree

algorithm computes the relative influence of theap@eters using Eq. (3.1).

570)=3 e = )
=1 (3.1)
where * () is the relative significance of parameter |, ihis index of the tree, vt
is the splitting feature associated with nodeis the number of terminal nodes in the
tree, andrtzis the improvement of the squared error.
The Spearman correlation coefficient (Eq. (3.2)erts the non-linear correlation
between the input and output variables [43]. & form of the Pearson coefficient with

the data converted to rankings.
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GZ(Xi Y )2
S .

where vy is the predictor, x is the input varialaled n is the total number of
observations. The boosting-tree algorithm rankg#rameter in the range 0 to 1,
whereas the correlation coefficients of the paramsetan be in the range of -1 to +1.
Figure 3.4 provides the ranking of the parametersegated by the boosting-tree
algorithm and the Spearman correlation coeffic{absolute value). Both metrics point
to the significance of the flow rate of the inflaém the time window from 12:00 A.M. to

5:15 A.M.
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Figure 3.4. Temporal significance of influent fleate on the TSS in the influent

In the second approach, a principal component arsa{i?CA) was used to reduce
the dimensionality of the dataset. In PCA, the detdergo an orthogonal, linear
transformation to a new coordinate system sottteagreatest variance by any projection
of the data is realized on the first coordinatédléckthe first principal component), the

second greatest variance on the second coordaradeso on [44].
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Table 3.2 presents the five principal componentsmwépplied to the 96
dimensional dataset. With an aim to retain 95%alality of the original dataset, two
principal components (i.e., PC1 and PC2 were ssf@cinfluent recorded at 2:00 P.M. -
2:30 P.M., 3:15 P.M., and 5:45 P.M. contributednist to the first principal component

(i.e., PC1).
Table 3.2. Parameters of the principal componealyais (PCA)
Principal . , Cumulative -
Eigenvalue Variance . Coefficient (Parameter)
Component Variance

0.104 (2:15 PM) + 0.104
(2:00 PM) + 0.104 (2:30 PM
+0.104 (3:15 PM) + 0.104
(5:45 PM)
-0.144 (1:30 AM) - 0.144
(1:45 AM) - 0.143 (1:15 AM)
+0.143 (11:00 PM) + 0.143
(10:15 PM)
-0.188 (11:15 AM) - 0.184
(11:30 AM)-0.183 (11:00
AM)- 0.18 (10:45 AM) -
0.179 (10:30 AM)

0.19 (11:30 PM) + 0.185
(11:45 PM) + 0.183 (11:15
PM) + 0.176 (11:00 PM) +

0.174 (10:45 PM)
-0.426 (7:45 AM) - 0.423
(7:30 AM) -0.327 (8:00 AM)
-0.212 (7:15 AM) - 0.162
(8:15 AM)

PC1* 88.68661| 0.92382 0.92382

pPC2* 3.23016 | 0.0336% 0.95747

PC3 1.5456 0.0161 0.97357

PC4 0.655 0.00683 0.9804

PC5 0.374 0.0039 0.9843

* Selected PCs

Based on the number of input parameters, data dérexyy and parameter
selection, five different scenarios were investgaand reported in this research (Table
3.3).
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Table 3.3. Models for estimating influent TSS

Scenario No. of Input
Number Input Parameter (Frequency) Parametpers
1 CBOD (daily average) 1
5 Influent flow rate, influent CBOD (daily 5

average)
3 Influent flow rate (15 min) 96
Influent flow rate (15 min, boosting treg
4 ranking > = 0.9, and absolute correlation > = 0.4) 29
5 Influent flow rate (15 min, PC1, PC2) 5

In this chapter, neural networks (NNs) are emplagechodel the data scenarios
listed in Table 3.4. Due to the complex, non-linkeahavior of the data used in modeling,
500 neural networks were trained by varying the bbeinof hidden units and activation
functions. The number of hidden layers was 1, waetbe number of neurons in a
hidden layer varied from 5 to 25. Five differentiaation functions, i.e., ‘logistic,’

‘tanh,’ ‘sigmoid,’ ‘exponential,” and ‘identity,” wre used. For each of the five scenarios
mentioned in Table 4, two-thirds of the data wesecuto derive the model, whereas the
remaining one-third of the data was used for tgsflrable 3.4 summarizes the testing
results obtained for the five scenarios.

While most of the data models discussed in thisaeh have rather high error
rates, the results obtained in Scenario 4 are [@iomi The reported results indicate the
significance of high-frequency data and the appad@iselection of parameters in
improving the accuracy of the predictions. Basedhenresults presented in Table 3.4,

Scenario 4 was used to construct the time sereES8. Figure 3.5 compares the actual
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and predicted values of TSS using the MLP mod&a&nario 4. The results in Figure

3.5 indicate a high coefficient of determinatiog £ 0.803).

Table 3.4. Models for estimating the TSS in théuierit

Function MLP Hidden Output MAE MRE
Approximator Structure | Activation | Activation (%)
Scenario 1 MLP 1-5-1 Tanh Identity 69.29 24.08%
Scenario 2 MLP 2-25-1 Tanh Identity | 64.47 | 21.49%
Scenario 3 MLP 96-15-1| Identity Exponential 64.69 | 33.10%
scenarios | MEP 216 | Tanh dentity | 5811 | 13.34%
Scenario 5 MLP 2-24-1 Tanh Tanh 60.88 | 31.38%
600.00
3
500.00
g 400.00
E 300.00 -
& 200.00
100.00 -
0.00 -

0.00 100.00 200.00 300.00 400.00 500.00 600.00
TSS-actual

Figure 3.5. Comparison of the actual and the predicted valtigdsS& (Scenario 4)
The model in Scenario 4 predicted the values of W&l$86.66% accuracy.

These values are used to fill almost 60% of tha datded to construct a five-year TSS

time series for the period from January 2005 thhoDgcember 2010. Figure 3.6 presents
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the run chart of the actual and predicted valueBS8 values over a period of five years.

The TSS data displayed in Figure 6 were used tidl Ibiué time-series prediction model

discussed in the next section.

TSS in influent (mg/l)

-+ == TSS approximated +  TSS original

Figure 3.6. Predicted five-year time series for TSS in influ@dta from January
1, 2005 through December 31, 2010)

3.4 Predicting the TSS

Considering the univariate nature of the datapte recorded values of TSS
were used as the input to predict the current atdd values of TSS. Such past values of
the parameters are known as the memory valueegfdrameters. Memory values have
been used extensively to improve the accuracyeptidictions of various models
developed for different applications [45, 46]. Naues of TSS over the past 10 days

were used as input parameters in the expressiomnsimo(3.5):
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TSS(t-T), TSS(t - 2T), TSS(t - 3T), TSS(t - 4T), TSS(t —5T)

TS = f(TSS(t—6T) TSS(t-7T), TSS(t—8T), TSS(t -9T) TSS(t—lOI’)J (3.5)

The autocorrelation and the boosting-tree algorithene used to rank the 10
memory parameters. The coefficients produced bywbeapproaches reflect a similar
ranking of the input parameters (Figure 3.7). Ascgrated, the immediate past value is
the best predictor, but the values recorded a wette past are more significant than the
values recorded two or three days in the past.rdihking of parameters is expressed in

Eq. (3.6).
¢[rss(t-m)]> ¢[rss(t - 7T)] > [TSS(t - 6T)] > ¢[TSS(t - 8T)] > ¢[Tss(t - 2T)] >
Z[rss(t -91)] > Z[Tss(t - 5T)| > Z[TSS(t - 3T)] > 7[TSS(t —10T)] > Z[TSS(t - 4T)]

(3.6)
whereg|.] is the significance of the parameter.
The five best predictors from Eq. (3.6) were salddb develop the model for
predicting day-ahead values of TSS. Descriptionth@fselected data-mining algorithms

for model construction are provided in the nextisec
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oM %@ %\‘?} o %\‘b SN SR %\‘9
AN R R N R M R RN

Time lag (days)
= @= Autocorrelation <= 4= Boosting tree importance

Figure 3.7. Ranking of memory parameters usededipr future values of TSS
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3.4.1. Algorithm selection

Five data-mining algorithms, i.e., the k-nearesginieors (k-NN) ; multi-variate
adaptive regression spline (MARS); neural netwdK); support vector machine
(SVM) ; and random forest (RF) algorithms, werasidered to predict future values of
TSS. A back-propagation algorithm determines tret HieNN. SVM constructs a set of
hyper planes in high-dimensional space, which @aoded for classification and
regression. RF is an ensemble learning method ioharhultiple trees are generated. It
selects n input parameters randomly to split tee trodes. MARS is a non-parametric
procedure for regression analysis. It construaduhnctional relationship between input
and output variables from a set of coefficients hasis functions, all driven by
regression data. The k-NN approach is an instaase¢elearning method in which the
function is approximated locally. For regressiondels, k-NN output is the average of
the k-nearest neighbors’ outcomes.

An algorithm predicting day-ahead values of TSSwaiinimum error was
selected to construct models for seven-day-aheadigions. NN was trained with 100
multi-layered perceptron (MLPs) by varying hiddeniput activation functions and the
number of neurons in the hidden layers. Activafiomctions, e.g., ‘logistic,” ‘tanh,’
‘sigmoid,’ ‘exponential,” and ‘identity’ were corgred for both hidden and output
nodes. A single hidden-layer was used in this ngtywhile the number of neurons
varied from 5 to 25. SVM was trained using foufetent kernels, i.e., RBF,
polynomial, linear, and sigmoid kernels. The numiifemearest neighbors in the k-NN
algorithm was varied from 2 to 10 in training, vehthe Euclidean distance was used as a
distance metric. MARS was trained on a number sfdfunctions, with the maximum
equal to 500. RF was trained by setting the nurobesindom predictors to three, while
the maximum number of trees was 500. Table 3.5epteghe 10-fold, cross-validation

result obtained using five data-mining algorithms.
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Table 3.5. Day-ahead prediction of TSS in influerih data-mining algorithms

Algorithm MAE MRE (%)
k-NN (k = 10) 62.15 26.46%
RF 52.19 21.66%

NN 38.88 16.15%
MARS 44.59 18.29%
SVM 61.36 26.10%

Based on the results in Table 3.5, the NN algori{hhP 5-24-1, hidden
activation: tanh, output activation: exponentialjperforms the other algorithms by
providing the lowest MAE and MRE errors. Figure Bl@strates the run chart of the
actual and MLP-predicted TSS values. The resulisgare 3.8 show that the MLP

algorithm is the most accurate predictor of futuaies of TSS.
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Figure 3.8. Comparison of the actual and MLP mqutebicted values of TSS
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Even though the results produced by MLPs (Tablg\Bdse promising, the

prediction error can be reduced further by updatimegprediction model iteratively for

the next time-step prediction. A sliding window wasgized with NN models to predict

future values of TSS iteratively. The value of Ti@8dicted by NN model at the current

time (TSS(t)) was used as the input to predictviilaes of TSS at some future time

(TSS(t+ 1)). The least significant parameter vegdaced with the predicted output to

keep the dimensions of the input data constantrgig.9 illustrates the concept of

iterative learning. After each iteration, the lesiginificant memory parameter was

replaced with the parameter predicted in the previteration. Thus, for predicting the

values of TSS two days ahead, the one-day aheddtiw® value of TSS was used as an

input, and this process was repeated until it waked.

Iteration 1 | TSS(#-5)

TSS(#-4) | TSS(#-3) | TSS(2-2) | TSS(#-1) TSS(#) -
+, ,,,,,,,,,,,,,,,,,,
lteration2 | TSS(4) | TSS(-3) | TSS(12) | TSS(1) | TSK(Y) b TSS(+1)
v ,,,,,,,,,,,,,,,,,,,,
Iteration i >
v
Iteration ']:SS(t+n-5) fSS(t+n-1) >

Figure 3.9. lterative learning procedure

TSS(t+n)
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In this research, seven consecutive memory paramee, {TSS (t-7), TSS (t-
6), TSS (t-5), TSS (t-4), TSS (t-3), TSS (t-2), &®S (t-1)}, were used as inputs to
predict the current value {TSS (t)}. Seven MLP misdsere constructed iteratively from
the training data using 10-fold cross validatiofasble 3.6 presents the results obtained

by the MLP at each learning step.

Table 3.6. MLP learning results

Learning MLP Structure Hidden Output
Steps MAE MRE (%) Activation | Activation
[days]

1 44.04 18.54 MLP 5-12-1 Tanh Exponential
2 46.15 19.19 MLP 5-21-1 Identity Exponentigl
3 46.80 19.60 MLP 5-3-1 Logistic Identity

4 47.05 23.14 MLP 5-25-1 Exponential Identity

5 49.99 23.82 MLP 5-25-1 Exponentiall Exponential

6 51.22 25.74 MLP 5-13-1 Tanh Tanh

7 50.76 26.58 MLP 5-2-51 Identity Exponentigl

In the next section, the best data-mining modedsuaed to predict the future
values of TSS. The prediction results obtainedgibasic and iterative learning are

compared.

3.5 Computational results

The values of TSS were predicted up to seven dagadcawith the MLP models
developed in Section 4 (Table 3.6). Table 8 prestd results obtained using MLP at
seven time steps, spaced at one-day intervals. Madfound to be in the range of 41-55
mg/l, whereas the MRE ranges from 22% - 32% foeseday prediction. The results in
Table 3.7 indicate that the week-ahead values & @& be predicted with almost 68%

accuracy.
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Table 3.7. TSS prediction results with NN (MLP 5-P4hidden
activation function: Tanh, output activation: expatial algorithm)

Time Steps [days] MAE MRE (%)
t+1 41.05 22.02
t+2 44.76 24.18
t+3 48.55 26.32
t+4 50.30 27.01
t+5 49.66 27.20
t+6 53.85 28.49
t+7 55.24 31.34

In this section, the models constructed by seve MIgorithms (Table 3.6) are

applied iteratively to the test data. Table 3.8vtes the MAE and MRE statistics for the

test dataset used for prediction. The computaticesallts in Table 3.8 indicate that TSS

can be predicted a week ahead with accuracy up%g with the MAE in the range of

40.95 - 52.30 mg/l and the MRE in the range of 2%8 27.55%.

Figure 3.10 illustrates the error improvement auae for the dynamic learning

scheme. By applying the iterative NN learning sceeam5% improvement in the MRE

and a 4% improvement in the MAE were obtained. rfEsellts shown in Figure 3.10

indicate that the iterative learning scheme candsful in making long-term predictions.
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Table 3.8. Results of the prediction of TSS usingPMalgorithms
(dynamic learning scheme)

Time Steps|[days] MAE MRE (%)
t+1 40.95 21.85
t+2 44.32 24.04
t+3 45.95 24.32
t+4 47.70 25.88
t+5 49.38 27.01
t+6 49.66 27.20
t+7 52.30 27.55
18.0%
~ 16.0%
é 14.0%
S 12.0%
5 10.0%
% 8.0%
° 6.0% m |(MAE)
W 4.0% = |(MRE)
2.0%

0.0%

t+1
t+2 t+3 t+a v

+

t+6

t+7

Time steps [days]

Figure 3.10. Error improvement over different tisteps
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CHAPTER 4
PREDICTING OF CBOD IN WASTEWATER

4.1 Introduction

Wastewater treatment plants involve several prasefs converting raw influent
into an efficient effluent [47]. The unsteady floate of influent wastewater calls for
efficient control solutions. From measurement @f ¢bncentration of influent waste,
useful information for the control can be obtainkdthe literature, biochemical oxygen
demand (BOD), chemical oxygen demand (COD), patkofihydrogen (pH), and total
suspended solids (TSS) are widely used indicatonsastewater quality [48-51].

In practice, the influent water quality is not mesesl with online sensors [52, 53].
CBOD, pH, and TSS are usually measured 2 or 3 tangsek. This time span is too
long for real-time control purposes [54, 55]. Manihg the waste concentration has been
considered in the literature as a way to addresgfluent quality issue. Various
deterministic models are presented in [56, 57]nitmrg [58] presented a method to
estimate the influent BOD concentration based simglified dynamic model. Onnerth
et al. [59] proposed a model-based software seénsdentify process relations, and
implemented on-line control strategies. Their expental results have shown a 30%
reduction of energy use.

An alternative way to estimate influent qualitybis using a data-driven approach.
Wastewater treatment plants record the water guyaditameters on a regular basis. Using
the existing data, the relationship between theevesncentration and the parameters,
such as influent flow, which is usually measuredtowously, could be identified by
data-mining algorithms. Over the past few yearta daining has been successfully
deployed in business and industrial [60], engimeef61], and science applications, and
has been proven to provide useful results. Relappdications of data mining include

analysis of the pollution level in a wastewateatneent plant emissary [62], monitoring
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an acidic chromic wastewater treatment plant useifyorganizing maps, and
discovering hidden patterns in wastewater treatrdata with induction rule techniques
[63].

In this chapter, CBOD is used as a metric to regrethe quality of the
wastewater. Data-mining- and statistics-based amhes are employed to identify the
relationship between the influent flow rate and @B®our data-mining algorithms are

used to predict the CBOD on daily data.

4.2 Data description and statistical analysis

The influent rate is calculated at 15 min interyalkereas CBOD, pH, and TSS
are calculated 2-3 times a week based on dailyesdration values. A five-year record
of long data from 1/4/2005 to 12/29/2010 was awd@dor the research reported in this
research. Fig. 4.1(a)-(d) presents the histogrdrfmsuo parameters. The data suggests
that the influent rate is concentrated in the ramig0-100), pH in the range of (7.1-7.5),
CBOD in the range of (100-400 mg/l), and TSS inrdrege of (100-400 mg/l). To
visualize the relationship between the input infiluete and various outputs, scatter point
diagrams are presented in Fig. 4.2(a)-(c). It caoliserved that CBOD and TSS
decrease exponentially as the influent rate inegashereas pH does not suggest any
direct relationship to the influent rate. The ctatien coefficients are provided in Table
4.1. Based on the correlation coefficients, mogedslicting CBOD are described in the

next section.
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Figure 4.2. Relationship between influent flow réitgut) and output, (a) CBOD, (b)
TSS, and (c) pH

4.3 Modeling and solution methodology

This section presents a three-step methodologyetigi CBOD values of
wastewater (see Fig. 4.3). In Step 1, the time-gtahdata is integrated to ensure that
both input and output data are of the same frequéncStep 2, the missing data is
addressed by approximating the relationship betvigfarent flow rate and output. In
Step 3, data-mining algorithms are employed to tansthe models predicting CBOD.
Owing to the seasonal effects of the CBOD, modmiséparate seasons are also

analyzed.
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Prediction models
1. Integrated model
2. Seasonal models
3. Modified seasonal

models

Filling in missing
data

Algorithm selection
and learning

Raw input
data

Day-ahead
prediction

Data integration

Figure 4.3. The tree-step modeling methodology

Due to the limitations of the measurements, theueacy of the data varied.
Here, the influent rate data is more frequent tih@CBOD data. Models based on daily
average and 15-min influent rate are analyzed.tihhe-stamp alignment of data ensures

the consistency of the frequency of the data.

4.3.1Filling in missing data

Though the frequency of the output data is 24 mesdata has not been recorded
on a daily basis. This has created gaps in theseiatahich needed to be addressed
before a time-based prediction could be perfornrethis research, both univariate daily
average influent rate data and multivariate (15 miluent) data is analyzed to fill in the
missing CBOD values. The aim is to derive a moldat generates CBOD values using
influent flow rate as input. For the univariatealaturve fitting [64] and genetic
programming is used, whereas, for the multivarittia, genetic programming and neural
networks are used.

Curve fitting identifies the best fitting curve thre corresponding equation given a
series of data points. The least error is ofteml igeneasure this fit. In the research

reported in this research, the data plot of thii@rft rate and CBOD indicates an
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exponential function (see Fig. 4.1). Therefore,dhginal data is fitted with an
exponential decay function. The ability of gengtiogramming to obtain the exact
mathematical equations from the input data haac#d the attention of many
researchers. In this research, a GP is utilizedemwotify the mathematical relationship
between the influent rate and CBOD. The operat@s)ely ‘multiplication’,

‘subtraction’, ‘divide’, ‘addition’, ‘constant’, ‘eponential’, ‘sine’, ‘cosine’, ‘square root’,
‘logistic’, and ‘gaussian’, constitutes the buildiblocks of function operators. Neural
networks (NNs) are the complex structures of nesitbat work together to solve a
specific problem. The network structure consistsptit layers, hidden layers, an output
layer and hidden layers to generate the output. & svell suited to model non-linear
data. As shown in Fig. 4.2(a), the data is higtdg-tinear; therefore, 100 NNs are
trained to obtain the best NN structure. The nunabdéidden layers is kept at 1, whereas
the number of neurons in a hidden layer varies fsaim 25. Five different activation
functions — ‘logistic’, ‘tanh’, ‘sigmoid’, ‘exponeral’, and ‘identity’ — are employed.

NNs are applied on three different datasets witteidint numbers of input parameters.

For both univariate and multivariate data sets-twals of the input
preprocessed data is used to derive the model gabéhe remaining one-third of the
data is used for testing. The distributions ofttlating and testing instances are
identical. More specifically, the initial data isatified into 3 folds, whereas the first 2-
folds of data are used for training, and the remgid-fold is used for testing.

In the research reported in the research influstietsrcollected at 15-min intervals
is used. Therefore, the multivariate dataset ha@984) inputs. The 15-min data is
combined with the CBOD data measured daily. Thadrndrequency (15-min) data
improves prediction accuracy of CBOD. The numbe@nputs needs to be reduced to
improve prediction accuracy. Two different appraesbf data dimensionality reduction
are used. In the first approach, a correlationfaoent between influent flow rate and

CBOD is used to identify the best time of the daydstimating CBOD (Fig.4.4) (Hall

www.manaraa.com



46

1998). The correlation coefficients follow diffetgmatterns through the day. A higher
correlation value is obtained in the time periazhir4:00 to 9:00 pm. Thus, using the

correlation coefficient value, the initial 96 dinsons of data are reduced to 20.
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Figure 4.4. Correlation coefficient between influé#aw rate and CBOD

In the second approach, two data-mining algoritkitise boosting tree and the
Wrapper with genetic search — are used. Boostewranks the parameters based on the
sum of the squared error computed at each spliteoinput parameter [65]. The average
statistic is calculated for all splits. The paraenetith the best split is assigned a value of
1, and so on. Wrapper is a supervised learningoagprthat uses genetic search to select
the relevant parameters by performing 10-fold cradilation [66]. Table 4.2 provides
the 10 best input parameters obtained using thstimgptree and the Wrapper genetic

search algorithms. Overall, 18 distinct input paggers are obtained.
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Table 4.2. Elected parameters using data-miningrhgms

Boosting tree Wrapper genetic search
Parameter Importance Parameter Importange
Influent6;15 PN 100 Influeniz;oo AM 100
Influenty.4s py 99 Influento:1s av 60
Influent5;45 PN 99 Influent)4;oo PN 60
Influents:zo pn 98 I nfluentos:15 pm 60
Influent7;15 PN 98 |nf|Uenio;00 AM 40
Influent7;oo PN 97 Influen12;15 PN 40
Influenty;go PN 97 Influenbl;go PN 40
I nfl uents.3opm 97 I nfl uentos:30 pm 40
Influentg;oo PN 97 Influen58;45 PN 40
I nfluent4;15 PM 96 |nf|Uent12;15 AM 20

The equations (4.1)-(4.4) represent the approximgdtinctions obtained with
curve fitting and genetic programming (GP) algarithbased on the univariate and
multivariate influent rate data. The populatioresif GP is set to 64, whereas the

crossover and mutation rate are 0.8 and 0.01, c&ésphy.

CBOD; = axexp(bUnfluentayg)

(4.1)

104x10%

CBOD, = 79.1+
influent gyg + cos((inﬂuent avg )2)+ 1.66005((inﬂuent avg )2 )2

(4.2)

145/influentspopp — 365 . coq 0185xinfluent715pp )

CBOD3 = 277xinfluent +
3 800PM ™~ 0000 7influentggopy — 00224 00028<influentzyspy

- 283xinfluentggopy — 12442

(4.3)

705xinfluent 430pm
00074 xinfluent gggpm — 00786

CBOD 4 = 944 x cos(— 0177 xinfluent g3g9pm )— 94.3+

(4.4)
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Subscripts 1-4 in the CBOD equations (4.1)-(4.¢yesent a modeling approach,;
namely, curve fitting, GP with univariate data, tiudriate GP with correlation
coefficient, and multivariate GP with a data-minadgorithm, respectively. In equation
(4.1), the optimal values of a and b are 492.51(afA13, respectively. The influggfin
equation (4.2) is the daily average influent raitmputed for each 15-min interval,
whereas, in equations (4.3)-(4.4), the influenivflate recorded at the specific time of
day is indicated by the subscript.

Table 4.3 presents the results produced by vafiougion approximators. The
NN-model built according to the input parametertedained by the correlation approach
outperformed all other approaches (it has the &salMRE). The results in Table 4.3
indicate that the models built from the multivagiaiata yielded smaller error than those

from the univariate data.

Table 4.3. Test results produced by different fiomcapproximators

. No. of
Funct|o_n Description input MAE MRE | Accuracy
approximator (%) (%)
parameters

CBOD, Curve fitting (exponential 01 51.86(29.21 | 70.78
decay)

CBOD, GP-univariate 01 58.6p30.98 | 69.00

CBOD; GP-multivariate 21 80.32| 32.14 | 67.85
(correlation-based)

CBODy GP-multivariate (data- 18 80.24| 31.93 | 68.06
mining-based)

*CBODs NN-multivariate 21 47.32| 26.15 | 73.85
(correlation-based)

CBODs NN-multivariate (data- 18 49.44| 27.32 | 72.67
mining-based)

CBODy, NN-multivariate (all 96 60.32 30.15 | 69.85
parameters)

*Best function approximator
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The analysis indicates that the NN (data-mininged@snd NN (correlation-
based) approaches achieved an accuracy of over T@&best function approximator,
CBODS5, is used to fill in the missed data in the@Btime series. Fig. 4.5 shows the run

chart of the observed and predicted values fronCIB®D5 model.
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Figure 4.5. Run chart of the actual and predictB@OD values

Fig. 4.6 (a)-(b) presents the original five-year@B data series (data with gaps),
and CBOD data series with the gaps filled. Thedlart shown in Fig. 4.6(b) is

consistent with that of Fig. 4.6(a).

In the next section, the prediction of CBOD valae$uture time horizons with

data-mining models is discussed.

www.manharaa.com




50

900.00
800.00
700.00 .
600.00
500.00
400.00 -
300.00 4
200.00 #%
100.00

0.00 T T r T T
1/1/2005 1/1/2006 1/1/2007 1/1/2008 1/1/2009 1/1/2010

Data points

CBOD

(@)
900.000
800.000
700.000
600.000 LA
500.000
400.000 1
300.000
200.000
100.000 4

0.000 T T r T r
1/1/2005 1/1/2006 1/1/2007 1/1/2008 1/1/2009 1/1/2010

Data points

(b)

Figure 4.6. Time-series plot of CBOD: (a) Originalta with gaps, (b) Data with filled
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CBOD

4.3.2. Algorithm selection and learning

The resulting processed data (Fig. 4.6(b)) is dsegdredicting CBOD values.
The input parameters predicting CBOD consists ef@BOD values recorded in the past,
also referred to as ‘memory parameters’.

Owing to seasonal variations in the CBOD valuesg@®incorporating

seasonality are also considered. The initial dativided into four seasons: Season 1
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(Jan-Mar), Season 2 (Apr-June), Season 3 (July;&ed)Season 4 (Oct-Dec). The run
chart of the CBOD values for the four data seasopiotted. It can be seen in Fig. 4.7
that CBOD in Season 1 behaves similarly to Seasarh@reas Season 3 is similar to
Season 4. Based on this observation, data corrdsmpto Seasons 1 and 2 is combined.
The resulting combination constitutes the modiSedsonal model. The distribution of

the data split is provided in Table 4.4.
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Figure 4.7. Run chart of CBOD in different seasons

Table 4.4. Data split description

No. Model Type Dataset No. Remarks
1 Integrated mode 01 Entire year data

Seasonal data (Data from|

04 (Spring, Summer, Fall, Jan-Mar, Apr-Jun, Jul-Sep,

2 Seasonal model

Winter) and Oct-Dec)
Modified 02 (Low CBOD Season, Seasonal data (Data from
3 seasonal model| High CBOD Season) Jan-Jun, and Jul-Dec)
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In the research reported in this research, foua-dahing algorithms are applied

to the three datasets. The CBOD prediction modelespressed in (4.5)-(4.6).

CBOD,(t-1),CBOD,(t- 2),cBOD,(t- 3,...CBOD, (t-10),
Vimegrarealt) = F{ MAX{CBOD,(t- 1),..CBOD, (t-10)}, MEAN{CBOD,(t- 1),.. CBOD,(t-10}},
MIN{CBOD, (t- 1),..CBOD, (t-10)}, SdDev{CBOD,(t- 1),.. CBOD, (t-10}} (4.5)

CBOD, (t-1),cBOD,(t-2),cBOD,(t- 3,...CBOD, (t-5),

MAX{CBOD, (t-1),..CBOD, (t- 5}MEAN{(:BODy ~1,..cBOD, (t-5)}

MIN{CBOD -1, CBO & SdDe\,{CBODy ~1,..CcBOD, (t-5)}

CBOD,(t-1),CBOD,( t-3,...CBOD, (t-10), (4.6)
MAX{cBOD,(t-1).. CBOD (t 10)} MEAN{CBOD( 1,..CBOD,(t-10}},
MIN{CBOD,(t-1),..CBOD,(t-10}}, xdDe{CBOD, (t-1),..CBOD, (t-10}

S\/SEaSOnit) = f

In the integrated model (4.5), the predicted d&@BOD value é’imegfated(t)) isa
function of the memory parameters (i.e., CBOD valokpast 10 days) and the statistical
measures, such as mean, maximum, minimum, andasthddviation of past 10-day
data. Thus, the total number of input parametetglidn the seasonal model (lﬁ%ﬁsonm
is a function of the input parameter over the pagear data (denoted as y in the CBOD
subscript), the past 10-day data of the same \&e#s anemory parameter, and the
statistical measures of the 5-year and 10-day d&overall number of input
parameters for the seasonal model is 23. The sanoidn is applied to the modified
seasonal dataset.

Four data-mining algorithms — the multilayered petcon (MLP), the
classification and regression tree (C&RT), the maliate adaptive regression spline
(MARS), and the random forest (RF) — are employgecbinstruct prediction models.
MLP is a feed-forward neural network algorithmleiarns hidden patterns in the data by
adaptively adjusting the weights of its neurons WheP structure includes input layers,
hidden layers, and an output layer. MARS is a narametric algorithm for solving

regression-type problems. It predicts continuousup@ters based on a set of predictors.
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RF is data-mining approach used for both clasgibosand regression; it selects the best
split of a node based on the randomly selectedeswdipredictors. C&RT constructs
binary trees for both classification trees and@sgion and uses the minimization of
prediction square errors as criteria for splittihg nodes.

Table 4.5 describes the results produced by thedata-mining algorithms. For
the integrated model, the MLP outperformed the iamg three data-mining algorithms
by achieving a prediction accuracy of over 85% e &hcuracy of the other three

algorithms — MARS, C&RT, and RF — is similar.

Table 4.5. Integrated model training results

Algorithm MAE MRE (%) | Accuracy (%)
MLP 35.84 14.91 85.08
C&RT 38.92 16.64 83.35
MARS 39.14 16.39 83.60
RF 37.27 16.63 83.36

Table 4.6 presents the test results produced bfptireseasonal models
constructed by different data-mining algorithmstiSactory accuracy was found for the
fall seasons (86.88%) and winter (89.84%); howesgring and summer (30.00%)
seasons yielded rather low accuracy. The reasandbéfis poor accuracy is the low
target CBOD values which were not seen in the imgidata set. Figs (4.8)-(4.9)
compares the results for the spring and winter@eadt can be seen from Fig. 8 that the
actual CBOD values are low. The MARS algorithm trently over-predicted as it
learned from higher values. The predicted valuesvshn Figs (4.8)-(4.9) were

produced by the best-performing algorithms.
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Talbe 4.6. Test results for seasonal models

Spring
Algorithm MAE MRE (%) | Accuracy (%)
MLP 146.0 218.86 N/A
C&RT 213.6 296.3 N/A
MARS 87.04 135.0 N/A
RF 166.7 240.8 N/A
Summer
Algorithm MAE MRE (%) | Accuracy (%)
MLP 152 230.0 N/A
C&RT 90.66 143.38 N/A
MARS 45.49 69.00 30.99
RF 97.00 166.13 N/A
Fall
Algorithm MAE MRE (%) | Accuracy (%)
MLP 40.17 21.18 78.81
C&RT 23.69 13.80 86.19
MARS 24.06 13.11 86.88
RF 53.99 27.34 72.65
Winter
Algorithm MAE MRE (%) | Accuracy (%)
MLP 42.06 15.56 84.44
C&RT 59.43 21.77 78.22
MARS 39.56 15.17 84.82
RF 28.53 10.15 89.84
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% 100.0000
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Data point No.

=== Actual output e==Predicted (MARS)

Figure 4.8. Actual and predicted CBOD values inrgpseason
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Figure 4.9. Actual and predicted CBOD values intefirseason

Overall, the MARS algorithm provided the best aecyrfor most seasonal
models. The algorithms selected to perform timeadh@edictions are shown in bold
(Table 4.6). Table 4.7 summarizes the results nbthfrom the modified seasonal
models; namely, high CBOD and low CBOD seasonsamtgipated, algorithms
predicting high CBOD values yielded better resulken compared with the algorithms
predicting low CBOD. For the high CBOD model, C&RiElded the best accuracy of
86.51%; whereas, for the low CBOD model, MLP yieldiee best accuracy of 69.76%.

Table 4.7. Test results produced from the modisieasonal model

Low CBOD season
Algorithm MAE MRE (%) Accuracy (%)
MLP 27.88 30.24 69.76
C&RT 51.73 46.88 53.12
MARS 34.26 34.73 65.21
RF 36.89 43.47 56.52
High CBOD season
Algorithm MAE MRE (%) Accuracy (%)
MLP 77.66 30.99 69.00%
C&RT 31.90 13.48 86.51%
MARS 33.33 14.51 85.48
RF 36.46 14.58 85.41
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4.4 Computational results

In this section, the algorithms that produced téstiperforming models are
employed to perform time-ahead predictions. Theimar prediction length is five

days.

4.4.1 Prediction results for integrated model

In this model, the MLP algorithm is used to perfguredictions. Table 4.8
presents the results obtained for five-day-aheadigtions. Accuracy in the range of
67.43-77.06% is found. Fig. 4.10 displays the dcnd predicted CBOD values att + 0

days. Fig. 10 demonstrates that, in most cased/Lireis able to approximate the CBOD

values.

Table 4.8. Time-ahead predictions by the integratedel

T”F deaf/fs?mp MAE MRE (%) Accuracy
t+0 30.88 22.93 77.06
t+1 33.78 25.44 74.55
t+2 36.08 27.67 72.32
t+3 38.38 29.74 70.25
t+4 40.02 31.36 68.63
t+5 41.17 32.57 67.43
500.0000
400.0000 f
S 300.0000;

B 200.0000 %44
100.0000
0.0000

1 51 101 151 201 251 301 351 401 451 501 551 601 651 701
Data point no.

=== Actual Predicted

Figure 4.10. Comparison of actual and predicted OB@lues produced with the MLP
algorithm
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4.4.2 Prediction results for seasonal data

In this section, CBOD in the fall season is preglictising MARS; whereas, in the

winter, it is predicted with RF. The fall seasor@@cy is in the range of 75.61-85.81%

for five days, whereas the winter season accumaaythe range of 88.73-89.00% (see

Table 4.9). RF yielded consistent accuracy in fiag-ahead predictions with steady

predicted values. The pattern of actual valuesweasuccessfully found. Figs 4.11-4.12

compare the actual and predicted values for t &y@ @head for the fall and winter

seasons, respectively.

Table 4.9. Accuracy of the time-ahead predictiosedsonal models

Fall season (MARS)

T'T deaf/ts?mp MAE MRE (%) Accuracy
t+0 26.06 14.18 85.81
t+1 32.23 17.03 82.96
t+2 33.91 18.67 81.32
t+3 37.31 20.78 79.21
t+4 38.61 22.20 77.79
t+5 42.33 2438 75.61

Winter season (RF)

T'T deaits"’]‘mp MAE MRE (%) Accuracy
t+0 31.44 10.95 89.04
t+1 31.46 10.99 89.00
t+2 31.52 11.00 88.99
t+3 3155 11.00 89.00
t+4 31.87 11.14 88.85
t+5 32.17 11.26 88.73
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Figure 4.11. Comparison of the actual and predi&B®D values in the fall season
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Fiture 4.12. Comparison of the actual and predi@B@D values in the winter season

4.4.3 Prediction results for modified seasonal data

In this section, the low CBOD season data is ptediwith the MLP algorithm;
whereas the high CBOD season data is predictedthatliC&RT algorithm. Table 10
describes the results produced for both seasomsadd¢uracy in the high CBOD season
is in the range of 84.82-87.69%. In the low CBORssm, the accuracy is in the range of
46.31-70.51%. Compared with the results obtaingtie spring and summer seasons
(discussed in Section 3.2.2), an improvement o#Q%: in overall accuracy is obtained;

however, compared with the high CBOD season, tharacy is still quite low. Figs

www.manaraa.com



59

(4.13)-(4.14) show the run chart comparison ofatieial and predicted values in high

CBOD and low CBOD seasons, respectively.

Table 4.10. Prediction results for the modifiedsssel data

High CBOD season (C&RT)
Time stamp 0
[days] MAE MRE (%) Accuracy
t+0 32.61 13.93 86.02
t+1 35.37 15.17 84.82
t+2 31.48 13.75 86.24
t+3 32.28 13.70 86.29
t+4 34.13 14.04 85.95
t+5 29.39 12.32 87.69
Low CBOD season (MLP)
Time stamp 0
[days] MAE MRE (%) Accuracy
t+0 28.91 30.16 70.51
t+1 32.76 34.76 65.90
t+2 36.93 39.97 60.02
t+3 40.06 45.25 54.74
t+4 40.66 47.21 52.78
t+5 46.54 53.55 46.31
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Figure 4.13. Comparison of the actual and predigtddes in the high CBOD season
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Figure 4.14. Comparison of the actual and predietgdes in the low CBOD season

Based on the results shown above, the seasonalsraréesuitable for prediction
in the fall and winter seasons when the CBOB vaareshigh; for the lower CBOD
values, however, the modified seasonal modelsgpeopriate. Even though the average
accuracy of the integrated model is high comparg the low CBOD season model, the

prediction accuracy for low CBOD seasons is ratbner
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CHAPTER 5
OPTIMIZATION OF WASTEWATER PUMPING PROCESS

5.1 Introduction

To lift raw wastewater collected from sewer lineddllowing treatment process,
particularly where the elevation of the wastewattat is not sufficient for gravity flow,
boosting pumps are usually used [67, 68]. This @@ster pumping process consumes a
significant electricity to deliver wastewater. yptcally consumes 10% to 20% of the
total energy used by the whole plant.

Conventional wastewater treatment plants use awsgkto temporally store the
raw wastewater. The purpose of it is to provideedhod allowing automatic operation of
the boosting pumps with a simple control [69]. Nal# pumps are controlled and
supervised by the programmable logic controllerG@PLThe drawback of such simple
PLC control is not efficient in pumping operatidrhe pre-defined control scheme may
not be able to select the best pump configuratamih and properly adjust the pump
rotating speed. In addition, the inflow rate of the wastewater changes significantly
over time and weather condition such as rainst@®j. [The pump performance also
declines with time, and the efficiency of the puagually gets worse. Therefore the
operation of the pumping process is not highlycg#fit under such control scheme,
resulting in energy waste.

To save energy consumption in wastewater pumpiaggss, different
approaches have been investigated. More effigentps have been designed and many
control schemes have been developing [71-74]. Bedide improvement on the single
pump, Ma and Wang [75] has presented an optimalalostrategies for variable speed
pumps with different configurations in complex loliig air conditioning systems to
enhance the energy efficiency. The results showatabout 12-32% of pump energy

could be reduced by using the optimal control sg#ti A pilot study by Zhang et.al [76]
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obtained a 24.25% energy saving by using the opfinap system schedule in a
wastewater treatment plant.

In this work, pumping operation is optimized witllaa-driven model derived by
multi-layer perceptron (MLP) neural networks. Ddtaren approach has been
successfully used in scientific and engineerindiapfions, such as wind energy, HVAC,
and wastewater treatment [77-79] to improve procesnergy efficiency. The goal of
optimization in this research is to reduce the gneonsumption by wastewater pumping
process. The configuration of pumps, i.e., the nemab running pumps and the rotating
speed of the pump are two control variables inpttodlem formulation. To find the
optimal operation configuration, a two-level intagon algorithm is proposed and
employed to find solutions for running number ofrps and rotating speed. The model

and the optimization results are then discussef®iail.

5.2 Data description

The data used in this work was also collected attastewater Reclamation
Facility (WRF), located in Des Moines, lowa. WRFojgerated to treat wastewater from
17 metro area municipalities, counties, and seugricts. It serves a population of
500,000 and processes over 50 MGD of raw waste\pateday.

WREF operates 6 pumps to lift the raw wastewatersi#&swvn in Figure 5.1, the
wastewater collected from areas is flown into tlepand pass the bar screens. The big
items, such as rocks and trunks, are screeneaoplatér disposal. The grit chamber is
used to settle down stones and sands. Then thewatsr enters into the wet well and is
lifted by raw wastewater boosting pumps to the priyrclarifier for the initial treatment.
Each pump is rated as 55 MGD capacity and 700 ki peninutes with variable speed
drive. Based on the inflow rate and wet well le¥leé number of operating pumps varies

to keep the wet well level. For example, more pusmesoperated when wet level and
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inflow rate are high. The control scheme is deteediby a pre-programmed PLC

control.
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Figure 5.1. Flow chart of wastewater pumping preces

The wastewater pumping process data used in thesreh is taken over the
period from 4/1/2011 to 8/4/2012. The data is pssed to exclude errors and outliers.
There are 62 possible configurations theoretidalfy6 pumps operation. Through mining
the dataset, 20 different configurations are foudither configurations are not available
in current dataset because of the operation pettithe plant. The dataset used to build
models is summarized in Table 5.1. The operatedpparneach configuration is shown in
the second column. For example, pumps {2, 3} amming simultaneously in
configuration C10, and pumps {1, 3, 4, 5} are opsnlaat the same in configuration C20.
The available cases for each configuration is @gidhto training set to build the models

and the test set to validate the accuracy of theatso
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Configuration Pumps Available cases Training casdsst cases|
C, {1} 5374 4030 1344
C, {2} 4421 3315 1106
Cs {3} 5550 4162 1388
Cy {4} 7904 5928 1976
Cs {5} 4397 3297 1100
Cs {6} 2002 1501 501
Cy {1,2} 491 368 123
Cs {1,4} 607 455 152
Cy {1,5} 377 282 95
Cic {2,3} 2334 1750 584
Cu {2,4} 897 672 225
Cyz {3,4} 364 273 91
Ciz {4,5} 277 207 70
Ci4 {4,6} 1052 789 263
Cis {5,6} 714 535 179
Cie {1,4,5} 405 303 102
Cyy {2,4,5} 353 264 89
Cie {2,4,6} 468 351 117

Cig {3,4,5} 482 361 121
Caxc {1,3,4,5} 330 247 83

5.3 Building and validating models

To optimize the wastewater pumping process, theeinafdtotal pumping energy

consumption should be built. Different from a mattita¢ical equation from the

engineering principle, the model is built basedtmoperation data by data-mining

algorithm. Equation (5.1) and (5.2) express thal jpumping energy consumptidh

and energy usagg, , of a single configuration:
P=2> p.X,
i=C,

P =fv.L)

(5.1)

(5.2)
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wherei indicates the ith number of configuration listedTiable 5.1 .X | is a binary
variable which either equals one or zero. The sutiomaf all X , should be equal to 1 as
only one configuration should be on at tieV, , is the pump speed for that
configuration andL, is the wet well level at timé.

The energy usag@ , of a single configuration is modeled by multi-layer
perceptron (MLP) neural network. MLP neural netkgolhave been successfully used to
find the complex and non-linear pattern in scieacé engineering problems [80, 81]. In
this work the number of hidden layer is 1 and thenher of neurons in the hidden layer
varies in order to obtain higher accuracy. Differactivation functions, i.e., logistic,
tanh, sigmoid, identity and sigmoid, are selectexdng) training process.

As shown in Figure 5.2, the first 40 cases in @8t et in configuration C1 have
been successfully modeled by MLP neural networle dibserved and predicted values
are very close to each other as well as the wetleteal trend. Figure 5.3 shows the
similar modeling results. Table 5.2 summarizespitegliction accuracy metrics for all

configurations. It also illustrates the excelleot@acy of the models.
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Figure 5.2. Observed and MLP neural network modatlisted energy consumption for
C1
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Figure 5.3. Observed and MLP neural network mpdetliicted energy consumption for

C20

Table 5.2. Performance metrics of energy consumptiodels

Configuration MAE MAPE SD of APE

C 5.860669733 0.016959492 0.012649011
C, 24.59039875 0.064456634 0.040341825
Cs 8.965691004 0.021630219 0.017612145
Cq4 8.044528664 0.020567482 0.015890538
Cs 5.269917086 0.016643775 0.022236368
Cs 11.05984522 0.034307164 0.03591208§

C; 18.40614128 0.032814162 0.03080949

Cs 5.34561635 0.008269741 0.006961746
Co 11.42316688 0.014271535 0.0125472683
Cio 12.09757271 0.018873324 0.012661691
Cu 14.71821326 0.025777816 0.02445185

Cyio 5.371886446 0.00988624 0.006759664
Ci3 10.00627462 0.016004065 0.023185261
Cus 15.35672135 0.027175781 0.02055830(
Cis 19.12878501 0.038058685 0.030396031L
Cis 11.83564606 0.010016076 0.0083113683
Cy7 8.074325455 0.00734845 0.00554528

Cisg 13.84064385 0.014572221 0.014619868
Cie 15.03526129 0.015937855 0.015868939
Cao 20.10760802 0.012819738 0.00805654
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Besides energy consumption model, the wastewatdowmurate model is also
built by MLP neural network. The purpose to devetlois model is to compute the wet
well level change at two continuous time step. db#flow rateQ , for the ith

configuration can be expressed in Equation (518),the wet well level change can be

calculated as shown in Equation (5.4):
O, =h(v L) (5.3)

_ _It_oi,t
L=y

(5.4)

whereh is the function which is obtained by MLP neuralvwerk. I, is the inflow rate
flowing into the wet well at timé&, Ais the area of the wet well.

Figure 5.4 and 5.5 show the first 40 cases of niogeesults of the wastewater
outflow rate for configuration 1 and configurati@@. The prediction is well performed

by MLP neural network. The computed prediction mestshown in Table 5.3 also

indicate the outflow rate is well modeled.
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Figure 5.4. Observed and MLP neural network modatiigted outflow rate for C1
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Figure 5.5. Observed and MLP neural network modeatligsted outflow rate for C20

Table 5.3. Performance metrics of energy outflote rmodels

)

)

)

Configuration MAE MAPE SD of APE
C 2.762826 0.07105776 0.069098704
C, 3.617816 0.08703103 0.076412464
Cs 2.901154 0.06592743 0.080804994
Cq4 3.651067 0.08249157 0.08752017
Cs 2.98317 0.06720429 0.061726867
Cs 6.71276 0.16561686 0.130624141
C; 3.886455 0.06027305 0.049863384
Cs 1.260544 0.01558512 0.010764965
Co 2.481695 0.03171347 0.11446598
Cio 2.026298 0.02906259 0.02413035
Cu 5.13326 0.07972925 0.075420871
Cyo 1.951649 0.03241246 0.026701404
Ci3 5.569913 0.07035922 0.085815404
Cu4 6.493714 0.0887062 0.163131003
Cis 4.688093 0.0700909 0.166293597
Cis 3.210542 0.02026464 0.025675297
Ci7 1.194051 0.00877542 0.007754813
Cisg 2.334557 0.02118571 0.017524321
Cig 5.110837 0.04467025 0.052162884
Coo 2.732426 0.01506617 0.011233222
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5.4 Optimizing pumping process

5.4.1 Problem formulation

The model trained by the MLP neural network is usedonstruct the
optimization model. To optimize pumping procesg, single objective minimizing the
energy consumption of pumping process can be esgdess a function of control
variables subjecting various constraints.

According to the operation conditions at WRF, tohenber of operating pumps at
the same can be adjusted as well as the rotaterwgdspf the pump. They are the two
decision variables to be optimized in this research

The constraints are based on physical limitaticsh @meration practice.

1. Only one case described in Section 5.3 canfeetafe at one time step. It
means that all other cases are off when one case is

2. The wet well level change cannot exceed a defuadue &

3. The high wet well level must be no more thanrtfaximum allowable value

4. The rotating speed of pump should be from 80%0@%o full speed to keep the
pump efficiency.

Therefore, the single optimization problem can theriormulated in (5.5):

min P

subject to:
CZO

P=>n.X,
i=C,
p=fv L)

CZO

> %, =1
[

IL-L,KJ
Ll < Lmax
0.8<sv <1
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X, 0(0or B (5.5)

5.4.2 Two level integration algorithm

Finding the optimal solution for an optimizatioroptem is challenging,
especially for the problem presented in this chapthich is a mixed-integer nonlinear
programming problem. It is not suitable to solveith a traditional optimization
algorithm, such as Genetic Algorithm (GA) or Pdei8warm Optimization Algorithm
(PSO).

In this research, a two-level intelligent algoritisrproposed to solve the mixed-
integer nonlinear optimization problem. Genetigoaithm [82] is a powerful, general
purpose optimization method mimicking biologicabgition and it has been successfully
applied to solve complex optimization problems. Ebkitions of a GA are encoded as
chromosomes and are evaluated by a fitness fund®iains of chromosomes selected are
based on the values of the fitness function to pcechew solutions using crossover
operator. Mutation of solutions is also used tayote genetic diversity. GA algorithm
preserves solutions that yield high fitness valaesl disregards poor quality solutions.
As it performs well in discrete optimization profvgit is employed at the first level to
find the optimal solution of the discrete decisiariable in (5.5).

At the second level, the decision variable of thenp rotating speed should be
solved. As it is a continuous variable, therefarejmproved particle swarm optimization
is employed at the second level to optimize the puotating speed. Particle swarm
optimization (PSO) is a stochastic optimizatioroaitnm developed by Eberhart and
Kennedy in 1995 [83] which was inspired by the abbehavior of birds flocking or fish
schooling. PSO has been successfully applied inymesearch and application areas. It
has been demonstrated that PSO produces bettésri@siower computational time
compared with other algorithms. Moreover, PSO kéively few parameters that need

to be adjusted which makes it easier to use.

www.manaraa.com



71

The standard PSO has some drawbacks. Firstly oitn@atation results have
direct relationship with the parameters. A gooa@stbn of parameters can result in
better solutions. Secondly, the parameters of R8@anstants. It means they are not
changing during the optimization process. And 1aRISO is easy to be trapped in local
optimal.

The larger inertia weight when updating the velesiof the particles in PSO
ensures a more effective global search, while gnadertia weight enables a more
efficient local search [84]. Similarly, the leargifactors control the ability of local
extremes and global extremes search. Thereforemiiv®ved PSO introduces dynamic
inertia weight and learning factors, so the patatan search the entire solution space
without falling into local optimum in the early regions. The exceeding boundary control
is also introduced the improved PSO algorithm tioagrce the overall ability of the
algorithm. When the position of the particle is ofithe boundary, the position is
redefined to make it is in the range of feasibl@tsans. This approach also ensures the
diversity of new particles for undetermined boundawnstraints.

The steps of the proposed two-level intelligenbathm can be expressed as
follows:

First level: Genetic Algorithm

Step 1: Generate initial population of (n) chronmoss.

Step 2: Assign fitness of each chromosome in tbaulation using the improved
PSO at level 2.

Step 3: Select two best fit chromosomes for repectdn.

Step 4: With a crossover probability cross over pgagents to breed a new
offspring.

Step 5: With a mutation probability mutate new pfisg at each locus. Place new

offspring in a new population.
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Step 6: If stopping condition is satisfied, theopsand return the best solution in
current population. Otherwise, return to Step &téwt next iteration.

Second level: Improved Particle Swarm Optimiza#dgorithm

Step 1: Randomly initialize n particle positiah$]R" and velocities; OR".

Step 2: Evaluate fitness value using current particle positions.

If f <f° thenf®=f, p’=d

If f <f% thenf9=f,K6 p?=d
Step 3: Update all particle velocities

Vi =@ +aon(p —d)+cr(p’ —d)

W= W, KW, 0~ W) 1T

C, = Crqart — K(Crgart = Ciong) / 11

C, = Cogart — K(Cogart —Coeng) / 11
Step 4: Update all particle positiods

d=d +v

If the particle position is moved aidtthe boundary, the current velocity

of the particle is recalculated based on its distato the boundary and the variation

range.
v, = —dis *, Mari

Step 5: Update fitness valdig and f°

Step 6: If the stopping condition is satisfied,rth&’is the final optimal solution
with the particle positiop®. Otherwise, return to step 3 to start next iterati

Here, nis the number of chromosomes of the first level &dorithm, particle’s
position and velocity arel, and v, respectively. . Parametﬁ?is the best individual
particle position, andd?is the best global positio is the inertia weightg, _ is the
maximum andw),,,is the minimum weight, and c, are cognitive and social parameters,
Cisart » Ciend » Cosart » ANAC,,,, are the start and end values of these learnirigriadk and

It are current iteration number and total iteratiambers, respectively, andr,are

www.manaraa.com



73

random numbers between 0 andliksis the distance of the particle which moves outside
the boundary to the boundary, aviari is the variation range. Figure 5.6 shows the flow

chart diagram of the proposed two-level intelligalgorithm.

First level
Start
Y
Initialize population
Second level
\ 4
. . Randomly initialize
Fit t >
o itness assignmen > all particles
Y \ 4
Update positions
Selection P»{ and velocities of
particles
\ 4 \ 4
Mating and Crossover Update local best
v \ 4
Update global best
Mutation
\ 4
No No
Criterion2?
Yes
Yes \ 4
Stop
End

Figure 5.6. The two-level intelligent algorithm
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5.4.3 Results and discussion

120 cases from the dataset are used to solve rfmégwith the proposed two
level integration algorithm. As the quantity of wesater inflow rate has impact on
pumping energy consumption, 3 scenarios are irnyagst in this research and each
scenario uses 40 cases. High wastewater inflowfrate 130 to 170 MGD is classified
as scenario 1. Scenario 2 with medium inflow rat&om 70 to 80 MGD, and scenario 3
has low inflow rate ranging between 30 to 50 MGD.

Figure 5.7 shows the optimization results for scenh Under the optimized
operation, i.e., the optimal combination of runnpgnps and the optimal rotating speed,
the pumping energy consumption can be reduced 9¢26The reduced energy usage is
mainly due to the finding of a better operating pucombination than the automatic
selection by PLC. For example, pump {1, 2, 3, 4swlae operated pumps in the first
case, however, pump {3, 4, 5} is the better confagjon for the same inflow rate based
on the optimization result. This different configtion can save significant energy
consumption while keeping almost same wet wellllanel deliver the same amount of
outflow (shown in Figure 5.8 and 5.9). This enalthesstable operation of following
wastewater treatment process. It is worth to pibiat the fluctuation in the optimized
pump energy consumption is caused by the optimalgpiotating speed. For scenario 1,
the original cases have used different pump cordiions. The optimized cases have
only one configuration but they consume differemérgy with different pump speeds. To
limit the impact to the electricity grid, a constrato restrain the fluctuation of the energy
consumption or smaller the pump speed range maphsidered in future research.

Figure 5.10 and 5.11 illustrate the optimizatiosutes for scenario 2 and 3.
Several cases in scenario 2 consume little highergy when comparing between
observed and optimized results. That is due tgtbblem formulated in Section 5.4.1 is

global optimized. For scenario 2 and 3, the punmgrgynconsumption are reduced 31.6%
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and 18.2%, respectively. The main reduction alsoefrom the optimal pump

configuration and rotating speed of the pumps.
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Figure 5.7. Observed and optimized pump energywapson for scenario 1
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Figure 5.8. Observed and optimized wet well leeeldtenario 1
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Figure 5.9. Observed and optimized outflow ratesfmegnario 1
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Figure 5.10. Observed and optimized pump energgwaoption for scenario 2
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Figure 5.11. Observed and optimized pump energguwoption for scenario 3

Figure 5.12 and 5.13 show the optimization resafliset well level and outflow
rate for scenario 2, as well Figure 5.14 and Figui® for scenario 3. The optimized wet
well level and outflow rate are very close to tihserved values for scenario 2. For
scenario 3, the optimized outflow rate has soma&tians from observed values. That is
because the flow rate is low for this scenario. [Botenges in pump speed may cause

large fluctuation in outflow rate in this scale.
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Figure 5.12. Observed and optimized wet well Iédgekcenario 2
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Figure 5.13. Observed and optimized outflow ratesteenario 2
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Figure 5.14. Observed and optimized wet well Iédgekcenario 3
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Figure 5.15. Observed and optimized outflow ratesteenario 3

The optimized results for three scenarios are suaethin Table 4. It can be
seen that the wet level and outflow rate haveslittlanges before and after optimization.
But huge energy reduction can be achieved forcalharios, where scenario 2 with
medium inflow rate has the biggest energy decredbe. results reveal that the data-
driven approach is capable to optimize the wastem@aimping process and reduce the

energy cost while keeping stably operation of tiWwing process.

Table 5.4. Pumping process optimization results

Energy consumption  Wet well Outflow rate
(%) level (%) (%)
Scenario 1 -26.9 -1.1 0
Scenario 2 -31.6 -0.8 0
Scenario 3 -18.2 1.5 -1.0
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CHAPTER 6
ENERGY EFFICIENCY OPTIMIZAITON OF THE
ACTIVATED SLUDGE PROCESS

6.1 Introduction

The activated sludge process (ASP) is one of tjgkecesses in wastewater
treatment plants (WWTPs) [85]. Microorganisms ia thcycled sludge feed on organic
matter in the wastewater, and they grow to formdlthat clump together and settle to
the bottom of the final clarifier, leaving a reladly clear, liquid-free organic material and
suspended solids [86].

In the activated sludge process, a large amouair @ injected into an aeration
basin to provide oxygen for growing microorganisansl to keep solids in suspension
[87]. The air is usually provided by high volumeWwkrs or low pressure compressors
through a diffused aeration system. These variougponents of the activated sludge
process account for 45% to 60% of the WWTP’s tetedrgy consumption.

Reduction of the energy consumption of the activatadge process is of interest
to researchers and engineers [88-94]. A traditiapakoach for reducing energy
consumption was based on improving the designeo#iration system. Using fine-pore
diffusers instead of coarse bubble or surface aevathe oxygen transfer rate can be
improved significantly [95]. Appropriate sizing asdlection of aeration equipment may
impact energy use. Since blower power is a cubictfan of airflow, it is important to
select properly-sized blowers supplying sufficidnit not excess, air to the aeration
basin.

An alternative way to improve the efficiency of taetivated sludge process is to
implement process control systems [96-100]. Eith@essive or inadequate air in the
activated sludge process may lead to energy wasteerational problems. Excessive

air can result in energy waste and an increasetfjsluolume index, which may be
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harmful to the sludge. Inadequate air can causkgslgettling problems as
microorganisms die due to insufficient oxygen. Tuglo proper process control, the
activated sludge process can meet the efflueninergants while minimizing energy
consumption.

Dissolved oxygen (DO) is a crucial control variatilat indicates the amount of
oxygen in the wastewater. It implies how much auflis required by the process. In
practice, the DO concentration can be controllegd/éen 1.0 and 6.5 mg/L. Various
controllers have been developed to control DO cotmagon in the wastewater [101-
103]. Piotrowski et al. [104] proposed a hierarehmontroller for tracking the DO
reference trajectory in activated sludge procegsemn-linear model predictive control
algorithm was used to design the controller. Theusation showed promising results in
energy reduction and robust DO tracking. DO is uisieir controlling the activated
sludge process, but the proper determination ofcDxentration over time is
complicated by the existence of pollutants in tlestewater and by the fact that the
influent flow rate and other uncontrollable variedl such as temperature, are interrelated
and change over time.

In this research, a data-driven approach is preddot the optimization of
energy efficiency in the activated sludge procé&ss air required by the process is
optimized by an evolutionary computation algoritbgncontrolling the DO concentration
as identified by a data-mining algorithm. Data-m@algorithms determine relationships
between input and output variables based on theepsodata. The data-derived model is
solved with an evolutionary computational algorittorproduce optimized values of the
control variables. Data-driven approaches have bsed successfully in engineering and
industry [105-108] when physics-based models cooldbe used.

This work is organized as follows. Section 6.2 diéss the data used in this
research and details of our data processing teghgidn Section 6.3, neural network

algorithm is used to design and validate the modetsrflow rate and effluent pollutant
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concentrations. In Section 6.4.1, Strength PargtuEionary Algorithm 2 (SPEA2) is
used to optimize the activated sludge processtirméne the optimal concentration of
DO. Section 6.4.2 formulates the optimization peablof the activated sludge process.
Section 6.4.3 presents the optimization resulthi@e scenarios representing a tradeoff
between energy consumption and quality of the effftuTwo control strategies, i.e., 1)
varying the DO concentration hourly and 2) keepghyDO concentration constant daily,

were implemented and compared.

6.2 Data description

The Des Moines Wastewater Reclamation Authority @)/Bperates a 97-
million-gallon-per-day (MGD) regional wastewatezdtment plant in southeast Des
Moines, lowa. The peak influent flow rate can bégh as 200 MGD. The plant was
constructed in the mid-1980s mainly to treat myativastewater and storm water from
the greater Des Moines metropolitan area. The atetivsludge process is used to remove
organic compounds from the wastewater via bioldgicacesses.

A flow diagram of the wastewater treatment prot¢hasthe WRF uses at the
regional plant is shown in Figure 6.1. The colldoiastewater enters the plant and
passes through five bar screens. Large items, asicags and sticks, are screened out for
later disposal. After screening, the influent wasteer enters a wet well and then is
pumped to primary clarifiers. After a retention émaf 1 to 2 h, scum floats to the surface
where it is removed by a skimmer. Then, the wastiema delivered by intermediate
pumps to six adjacent aeration tanks, each of wisiclivided into four basins. Each
basin is 300 feet long, 35 feet wide, and 20.9 deefp. Process air is provided by single-
stage centrifugal blowers with maximum capacit5f000 scfm. During normal
operations, a required quantity of the sludge ftbexsecondary clarifiers, called returned

activated sludge (RSL), enters the aeration tamiaigh sludge pumps. When the RSL
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and the wastewater are mixed, microorganisms irattigated sludge use oxygen
provided by the fine bubble diffusers located om Itlottom of the aeration basins to
break down the organic matter. The remaining slddge the secondary clarifiers and
the sludge from the primary clarifiers are pumpethe anaerobic digesters to produce
biogas. The liquid from the secondary clarifiemafs to the chlorine contact tanks where

chlorine is injected to kill most bacteria. Thedireffluent is discharged to the river.

Effluent

Influent 4@

Intermediate pump

I
|
|
|
I :f—'xﬁration tanl |Carifier
| | '
|
|
|
|
|

loa

- Blower

Eeturn sludge pump

Figure 6.1. Flow diagram of the activated sludgecpss

The data used in this research were collected 2010 through 12/31/2010.
Since many variables are involved in the activaledge process, a boosting tree
algorithm [109] was used to evaluate the relatmpartance of the process variables.
Hourly and daily data were collected. The hourltadacluded the influent flow rate,
returned sludge flow rate, DO concentration, amflioav rate. The daily data (measured
three times a week) included the carbonaceous einal oxygen demand (CBOD) in
the effluent, the total suspended solids (TSShéndffluent, and the temperature and pH

in the aeration tank. These data were used to detbe models of the airflow rate and
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effluent pollutant concentrations by a data-minahgprithm. Errors and outliers in the
dataset were removed to improve the accuracy afibdels. The final dataset was

divided into a training dataset and a test datdded.two datasets are described in Table

6.1.
Table 6.1. Description of the datasets

Dataset Description Observations Time Period

1 Model training dataset: Building| Hourly 4368 data points ;errléﬁgﬁo
prediction models Daily 90 data points 8/25/2010
Model test dataset: Testing . 8/26/2010

2 prediction model and ggﬁrlég%ﬁada;?n?:mts through
optimization y P 12/31/2010

The airflow rate of the ASP provides a measuréefdnergy consumed, which
was one of the objectives of this study. In the elddat predicted the airflow rate, DO
concentration was a controllable variable. The ftates of the influent and the returned
sludge were uncontrollable variables. With lesdlawing into aeration tanks, the quality
of the effluent was degraded, which was a matteoatern because it is desirable to
maximize the quality of the effluent to meet fedenad state requirements. Since CBOD
and TSS in the effluent reflect the quality of #féuent, the objective can be
transformed to minimize the concentrations of CB&1 TSS in the effluent, thus
CBOD and TSS models were built by data-mining atgor. Temperature and pH values
are uncontrollable variables that affect the quaditthe effluent. All variables used in

this research are presented in Table 6.2.
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Table 6. 2. Variables and their units

Variable Description Unit
Up Influent flow rate MGD
Uy Returned sludge flow MGD
Us Temperature °C
Ug pH
X Dissolved oxygen mg/L
Y1 Airflow rate scfm
Yo Effluent CBOD mg/L
Y3 Effluent TSS mg/L

A multi-objective model that minimized the airfloate, y,, the effluent COBD,

y,, and the effluent TSSy,, was formulated in (1). Since the CBOD and TS$ef
effluent were daily data, the hourly data of infiuélow rate, returned sludge flow rate,
and the concentration of DO was averaged to dailyes. The constraints used in the
model are discussed in Section 6.4.

min(y;,Y,.Ys)

where: 'y, = f,(u,u,,X)
Y, = fz(ul_ave’uz_ave’u3u4JXave)

y3 = f3(u1_ave’ l’|2_ave’u 3,U 4’Xave) (61)

6.3 Model building and validating

Neural network (NN) algorithm was used to build thedels of the functions in
(6.1). The NN algorithm captures and representsitimelinear and complex relationships
between the input and output variables [110]. Ia tesearch, a supervised, back-
propagation neural network was used. The input @atpresented to the network
repeatedly. With each presentation, the final ougpas improved by calculating the error

between the output and the desired output, ancethét was used as feedback to the
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network to adjust the weights. The complex and lnagar relationship between input
and output can be modeled with good accuracy [1Algraphical representation of a

neural network is shown in Figure 6.2.

— - -
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J ) / A 4

Hiden layers

Figure 6. 2. Block diagram of a neural network

Three models, airflow rate, effluent CBOD, andwdfit TSS, were built with
neural networks. For each model, 200 neural netsvawdee trained with one hidden layer
and the number of neurons between 3 and 30. ThgdBme-Fletcher—Goldfarb—Shanno
(BFGS) algorithm [28] was used to minimize the safithe squares (SOS) cost function
in building each network. The iden112y functiorgiktic sigmoid function, hyperbolic
tangent function, negative exponential functiord #re standard sine function were
selected as hidden and output activation functiDesails of the best performing neural

networks are presented in Table 6.3.

Table 6.3. Multiple layer perceptron neural netvgork

Model NN Trair)ing Erro_r Hildde.n O_utpgt
Structure Algorithm | Function| Activation | Activation
Airflow rate 3-9-1 BFGS 48 SOS Tanh Exponential
Effluent COBD 5-21-1 BFGS 38 SOS Logistic  Exponehti
Effluent TSS 5-8-1 BFGS 15 SOS Tanh Tanh
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Figures 6.3 through 6. 5 compare the first 50 olexkralues (from dataset 2) and
the predicted values of the airflow rate, the effluCBOD, and the effluent TSS
concentration. The trend of airflow rate was preatiovell, and the predicted values and
the observed values are close to each other. Tlelsxderived from the hourly data
were accurate. Most predicted values of the efl@BOD were greater than the
observed values. Since most of the collected data wround 4 mg/L, sharp peaks can
cause significant errors in the NN model. The pattd the effluent TSS concentration
was predicted well, and gaps existed between teergbd and predicted values for the
low values of the COBD. However, the predictioroeffor the peak values was small, as
shown in Figure 6.5. Due to the fact that the maxmpollutant concentration in the
effluent is regulated, this model was useful beeanfsts accurate predictions of peak
values. The accuracies of the predicted resultpr@sented in Table 6.4. The MAE,
MSE, and SD of the airflow model were large becabeeobserved values were large.
The metrics indicated that the accuracy of theiptieoh of effluent CBOD was better

than the accuracy of the prediction of effluent TSS

35000
—+— Observed - - Predicted
30000

25000

20000

15000

Airflow rate (sefm)

10000

5000

Time (hour)

Figure 6.3. Airflow rates observed and predictedhi®/neural network model
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Figure 6.4. Effluent CBOD concentrations observed predicted by the neural network
model
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Figure 6.5. Effluent TSS concentrations observeti@edicted by the neural network
model
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Table 6.4. Accuracies of the predictions of the¢hmodels

MAE MSE SD

Airflow rate 398.12 215,087 240.30 scfm
scfm scfmf

Effluent CBOD 0.18 mg/l] 0.17 mA.? 0.38 mg/L

Effluent TSS 0.86 mg/Ll  0.99 Mgy > 0.51 mg/L

6.4 Multi-objective optimization

6.4.1 SPEA 2 optimization algorithm

In this work, Strength Pareto Evolutionary Algontt?2 (SPEA2) was used to
solve the multi-objective optimization problem farlated in (1). The SPEA2 proposed
by zZitzler and Thiele [113] has been used extemgiveoptimization due to its improved
performance. The pseudo code of the algorithm SPEABown next.

SPEA 2 Algorithm

1: Initialize population P

2. Create empty external archive E = @; Set t=0

3: for t =0 to max iteration do

4: Calculate fitness values of individuals ieRd E

5: Copy all non-dominated individuals in ipdhd Et to &,

6: Use the truncation operator to remove elemfeots E.; when the
capacity of the file has been exceeded

7: If the capacity of E’ has not been exceeded,dsninated individuals in
Piand Eto fill Exq

8: If t> max iteration or some other stopping criteriosasisfied, set output
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to the set of decision vectors represented by ¢timedominated individuals in:g.
Stop.
9: Perform binary tournament selection with repfaent on E; to fill the
mating pool
10: Apply crossover and mutation to the matinglplmecreaset =t + 1
11: End for
12: End procedure
The control parameters of the SPEA2 algorithm rbediuned for it to achieve its
best performance. In this research, the populaio® P was set to 100. The ratio
between the archive size and the population sizesetto 0.5 to provide an adequate
selection pressure for the elite solutions. Theatiorn operator was selected as 0.5 for

global search and 0.1 for local search. The maxinteration number was set to 200.

6.4.2 Problem formulation

The variables of the model (6.1) were constrairmaling to the operational
practice at WRF. The lower and upper limits of i@ concentration were 1.0 and 6.5
mg/L, respectively. To safely operate the activatiedge process and avoid the death of
microorganisms due to insufficient oxygen, a DOaantration of 2.0 mg/L, a value that
is maintained in most activated sludge processas,used as the lower limit. The airflow
rate was constrained to the range of 18,000 to0R0s@fm, and the maximum limits of
the effluent CBOD and TSS were 25 mg/L and 30 mgylcompliance with
environmental regulations.

The number of possible solutions to a multi-objextptimization problem could
be infinite. A set of these non-dominated solutitorsns the Pareto front. Each solution
on the Pareto front represents an optimal solwtitin different trade-offs in satisfying

different objectives. In this research, the weigrgam approach was used to consider
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three optimization scenarios involving differenésarios of energy savings and effluent
quality. The final multi-objective optimization meldis formulated in (6.2).
min(w,y, +W,y, +wyy )
subject to:
2.0<x< 6.8
18000< y, < 5000(
Y, <25
Y, <30 (6.2)
wherew,, w,, andw, are the weights for objectives, y, andy,, respectively. The
values assigned to the weights and the meaningl off the scenarios are presented in

Table 6.5.

Table 6.5. Description of three optimization scéevsr

Scenario Engrgy Effluent. Effluent TSS Description
Weight | CBOD Weight Weight
1 w =1 w, =0 w, =0 Energy savings preferred
2 w, =0.5 w, =0.25 w, =0.25 qual importance of energy
savings and effluent quality
3 w, =0 w, =0.5 w, =0.5 Effluent quality preferred

6.4.3 Results and discussion

To solve the multi-objective optimization model(612), two control strategies
were tested in this research. Strategy A maintaihedhourly DO concentration constant
for a day. This was beneficial for older WWTPs gqpaid with constant speed blowers.
By adjusting the arrangement and the number of &teythe total airflow rate to the

aeration tanks changes. In newer WWTPSs, variablpugncy drives are used to control
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the blowers. Strategy B was suitable for applicaion which hourly DO values can be
controlled. In strategy B, the blowers were adjdsteurly based on the hourly computed
DO concentrations.

To reduce the computation time when solving thetiroldjective optimization
model, data points collected over a seven-day geviere considered in this work, i.e.,
168 data points for the airflow rate and DO conaidn, and seven data points for the
effluent CBOD and TSS concentration. Figures 6réugh 6.9 and Figures 6.10 through
6.13 illustrate the optimization results for Scemdrwith Strategies A and B,
respectively. It can be seen that the airflow veés reduced significantly by controlling
the optimal setting of the DO concentration at astant value or at hourly-adjustable
values. In this scenario, the DO concentration ay@snized as low as possible with
preference given to saving energy. Some DO conaigoris with Strategy B were
optimized to the lower bound, i.e., 2.0 mg/L. Oa tther hand, the concentrations of
CBOD and TSS in the effluent pollutant reach highues, approaching their upper limits
(as shown in Figures 6.9 and 6.13).

The optimization results of Scenario 2 with Strgt8gare shown in Figures 6.14
through 6.17. The optimized airflow rate also weduced significantly compared to the
original observations. The lower optimal DO concatidon was close, but it did not reach
the defined lower limit (shown in Figure 6.15), whileaves extra room for operational
safety. The resulting concentrations of CBOD an& Tri®reased in the effluent, but the

peaks are not as high as in Scenario 1.
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Figure 6.6. Observed and optimized airflow ratesScenario 1 of Strategy A
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Figure 6.7. Observed and optimized DO concentrationScenariol of Strategy A
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Figure 6.8. Observed and optimized effluent CBODcemtrations for Scenario 1 of

Strategy A
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Figure 6.9. Observed and optimized effluent TSSeatrations for Scenario 1 of
Strategy A
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Figure 6.10. Observed and optimized airflow ratesScenario 1 of Strategy B
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Figure 6.11. Observed and optimized DO concentnatfor Scenario 1 of Strategy B
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Figure 6.12. Observed and optimized effluent CB@BDoentrations for Scenario 1 of
Strategy B
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Figure 6.13. Observed and optimized effluent TS&eatrations for Scenario 1 of
Strategy B
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Figure 6.14. Observed and optimized airflow ratesScenario 2 of Strategy B
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Figure 6.15. Observed and optimized DO concentnatfor Scenario 2 of Strategy B
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Figure 6.16. Observed and optimized effluent CB@Boentrations for Scenario 2 of
Strategy B
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Figure 6.17. Observed and optimized effluent TS&eatrations for Scenario 2 of
Strategy B

The airflow rate changes for the three scenariepegsented in Table 6.6. In
general, Scenario 1 saved more energy than the wtbescenarios when energy savings

were preferred. For Scenario 1, the energy sawwegs 13% and 16% for Strategies A
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and B, respectively. If the preference were assigoghe effluent quality, it would
consume more energy, as shown in Scenario 3. Esangggs of 9% or 10% were
achieved when equal importance was assigned tggsaring and effluent quality. In
addition, Strategy B had a lower airflow need tSarategy A for all of the different
scenarios. It is reasonable that the DO conceatrairied over a larger range if it were

adjustable hourly as opposed to being a constamtighout the day.

Table 6.6. Reductions in airflow rate requiremdatsScenarios 1, 2, and 3

Airflow Rate Reduction Scenario 1 Scenario P acen3
Strategy A 13% 9% -5%
Strategy B 16% 10% -T1%

Based on the presented results, Scenario 2 widtegty B is recommended
because it saved energy while it maintained eflgesality at an acceptable level.
Compared with Scenario 1 in which the use of enérgthe activated sludge process
was minimized without considering the effluent giyalScenario 2 took less risk of
microorganisms dying because of insufficient awflor of effluent pollutants exceeding
the established upper limits. If the effluent qyavas the main concern, Scenario 3,
which minimized the pollutant concentration in #fuent, may be considered.

In this work, energy efficiency of the activateddde process in a wastewater
treatment plant was optimized with a data-driveprapch. Two objectives were
considered, i.e., minimizing the energy use andimaing the effluent quality.
Industrial data were collected at a wastewatetrreat plant and used to build the
models by neural networks. The model of airfloveraepresenting energy use, was built

with controllable variable DO concentration and amicollable variables, including
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influent flow rate and return sludge rate. The nisaé effluent CBOD and TSS
concentration, indicating the effluent quality, luded the average DO concentration as a
controllable variable and influent flow rate, retigludge rate, temperature, and pH
values as uncontrollable variables. The model diioav rate was highly accurate, and the
models of the effluent CBOD and TSS had acceptaixderacy. The evolutionary
algorithm was used to find the optimal DO concdrdgrathat minimized energy use and
effluent pollutant concentration.

Two control strategies, constant and hourly vagdbD concentrations, were
investigated to find the optimal DO concentratiémsthree different scenarios
representing the preference over energy savinfflaest quality. The computational
results indicated as much as 16% of the energy instb@ process could be saved when
preference was given to energy saving. A scenhabgave equal importance to energy
saving and effluent quality was recommended tolgafgerate the activated sludge
process. It could save 10% of the energy consuniidhourly-variable, optimal DO
concentrations.

The results presented in this work indicated tipginoization of DO concentration
was a useful approach for optimizing the energigiefficy of the activated sludge
process in a wastewater treatment plant. Basetleopreference of individual WWTPs,
different scenario with different control strategimould be implemented to achieve the

desired optimization objective.
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CHAPTER 7
OPTIMIZATION OF BIOGAS PRODUCTION PROCESS

7.1 Introduction

Sludge is a byproduct in wastewater treatment @®eaad is suitable for biogas
production. Anaerobic digestion of sludge involegsrocess in which microorganisms
break down biodegradable waste in the absenceygferx[114, 115]. As a result of
anaerobic digestion, biogas and carbon dioxidebiolgas are produced. The biogas can
then be used to generate electricity or heat.

Biological, chemical, and physical reactions amlued in biogas production
process [116]. Due to the complexity of the prodask&ling formal models is a
challenge. The models presented in literature avally nonlinear and non-stationary
with restrictive assumptions that may not hold iagtice [117].

Numerical studies on comprehensive biogas produactiodels for prediction and
optimization [118-120] have been reported in theréiture. Data-mining algorithms such
as neural networks have shown success in buildiogets of the biogas production
process. An adaptive neuro-fuzzy inference systas applied for modeling anaerobic
digestion of primary sludge in a wastewater treatinpéant [121]. The model
satisfactorily predicted effluent volatile soliddahiogas yield. Holubar et al. [122] used
several feed-forward back propagation neural ndtsvto model and subsequently
control biogas production in anaerobic digesters Gomposition, biogas production
rate, pH, volatile suspended solids and other patrars were measured and simulated to
determine the best feeding profile.

Data mining is a powerful tool to analyze datadrestific and engineering
applications, such as bioinformatics, manufactyrargl wind energy [123-126].

Evolutionary computation algorithms are widely usedolve complex, linear and
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nonlinear optimization problems. Successful appilbces of evolutionary computation
algorithms have been reported in engineering, ntisndg@nd science [127-129].

In this work, biogas production is optimized witllaa-driven model derived by
a multi-layer perceptron (MLP) neural network. Rese temperature, total solids, volatile
solids, and pH value are selected as controlladt@bles for the model. The
uncontrollable variables include sludge flow rateganic load, and detention time. To
maximize biogas production, particle swarm optirti@a(PSO) is employed to find
optimal solutions for control variables and othacaontrollable variables. The model and

the optimization results are then discussed inildeta

7.2 Data description

The data used in this work was collected at the demes Wastewater
Reclamation Facility (WRF), located in Des Moinksya. WRF is designed to recycle
wastewater from 16 municipalities, counties, andegedistricts.

The WRF includes three complexes to process sladdgroduce biogas. Each
of the complexes has 2 anaerobic digesters thdtldrdt (35.05 m) in diameter, 29.5 ft
(8.99 m) for side water depth and 15 ft (4.57 nm)done depth. The sludge is delivered
to the digesters after being mixed in sludge-blegdanks. The temperature in the
digester is kept in a range from 90°F (32.22°C)@6°F (40.56°C) and is controlled by a
sludge heat exchanger. The temperature is genenailytained at 100°F (37.78°C). In
the absence of oxygen, microorganisms break dowdysland produce biogas and
carbon dioxide, which is first stored in a gas spheith 141,260 cubic feet (4000 m3) of
capacity to meet peak usage demand, and then larerdd to gas generators to produce
electricity. The heat generated in the gas combussi used to maintain the temperature
of the sludge heat exchangers and also heat plédirgs in the winter season. A flow

chart diagram of the anaerobic digestion at WRshmswn in Figure 7.1.
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Figure 7.1. Flow chart of anaerobic digestion

The biogas production data used in this work wasfdaily samples taken over
the period from 1/2/2008 to 12/31/2010. As soma ¢aints involved errors, e.g., out of
range values, the dataset was preprocessed. Toesgen dataset included 724 data
points and it was divided into training and tesss&he training set was from 1/2/2008 to
3/31/2010, and it included 576 data points to btlikl prediction model. The test set from
4/1/2010 to 12/31/2010 contained 148 data poindsitanwas used to test the developed

model. The dataset descriptions are provided ineral.
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Table 7.1. Dataset description

Dataset Description No. of instances

1 Training dataset: building predictig 26 observations
model

2 Test dataset: testing prediction model 148 olagemrs
Total dataset: 724 data points 724 observations

Although the original dataset included 11 paransgteome of them were
removed because as they did not have obvious imdkien the biogas production. In this
research, digester temperature, volatile solida) swlids, detention time of sludge, pH
value and biogas production were selected to laupdediction model. At WRF, digester
temperature and volatile solids fraction are cdtabde, and other parameters are

uncontrollable variables. The list of parameterghuheir ranges is shown in Table 7.2.

Table 7.2. List of parameters

Variable Variable Name Unit
X1 Temperature °C
X Total solids %
X3 Volatile solids %
X4 pH number
Uy Sludge flow rate riday
Uy Organic load kg/h
Us Detention time day
y Biogas production iday

The biogas production model involving the seleg@athmeters is expressed in
equation (1).
Y = F (X, Xy, X3, X,,U,U U 5) (7.1)
Temperature is the most important variable affectire rate of digestion and

biogas production. Even though anaerobic microdsgacommunities can endure
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temperature ranging from below freezing to aboVe’E&7.22°C), they thrive best at
temperatures from 68°F (20°C) to 105°F (40.56°@nfesophilic and 113°F (45°C) to
135°F (57.22°C) for thermophilic. To increase bi®gaoduction, the digester must be
kept at a consistent temperature, as rapid chamfjedisturb bacterial activities. This is
also the reason why most anaerobic digesters eqaime level of insulation or heating
which will generally increase biogas productiorcald seasons.

The total solids in wastewater is another variafileencing biogas production.
The concentration of total solids has an impadheneffectiveness of the
microorganisms in the decomposition process duaimaerobic digestion. Igoni et al.
[130] found that biogas production increased whenpercentage total solids of waste
increased. A statistical analysis showed that tinenér was a power function of the latter,
and there was a point where no further increaskdrbiogas production would be
obtained when the percentage of total solids kepeasing.

The volatile solids in wastewater is measured addtal solids, excluding the ash
content, as obtained by complete combustion of@gbding waste. It contains the
biodegradable volatile solids and refractory vééasiolids. The former is useful in
estimation of the biodegradability of the waste #mallatter is not easily degraded by
microorganisms, so volatile solids concentratide@s both biogas production and the
composition quality.

Detention time is a critical element in controlawfaerobic process. As the biogas
formers are slower to grow and are sensitive tagha in the operation conditions, a
short detention time results in sludge being washedf the digester. A longer detention
time allows the creation of a buffering alkalinttyform and stabilization of the
microorganism environment.

Anaerobic microorganisms, especially methanogeessensitive to pH in the
digester and their growth can be inhibited by acatinditions. The pH value for

anaerobic digestion usually varies between 5.58hdAt an early stage of digestion,
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acetogenesis can lead to accumulation of large atea@i organic acids resulting in an
acidic environment with a low pH value. When digastreaches the late methanogenesis

stage, the concentration of ammonia rises andktheatue may exceed 8.

7.3 Model building and validating

The multi-layer perceptron (MLP) neural networkahxes multiple fully
connected layers. Except of the input nodes, eade is a neuron with a
nonlinear activation function. MLP utilizes a swised learning mechanism, called back
propagation, for training. MLP is a modificationtbie standard linear perceptron able to
distinguish data that is not linearly separablel]13

Dataset 1 and dataset 2 of Table 7.1 were useditoand test the MLP neural
network model. In all, 2000 single hidden-layer ra@metworks were trained. The
number of neurons in the hidden layer varied frota 32. Table 7.3 summarizes the best
performing neural networks. To measure the modaliacy, the sum of squared error
(SSE) is used in this research. The SSE is theasuhe squared difference between the
target and actual output values on each outpufL@&]. The Broyden—Fletcher—
Goldfarb—Shanno (BFGS) algorithm was used to mimén8SE while building each
neural network model. The iteration number of the&% algorithm ranged between 18
and 83 as shown in the 3rd column in Table 7.3.tidlel nonlinear hidden and output
activation functions, including identity, logisti@nh, and exponential, were used for the
neurons. The activation functions used in the nwodes listed in Table 3. The MLP
neural networks successfully identify the nonlinedationship between the process

variables as demonstrated with the low validationrs shown in Table 7.3.
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MLP Validation Training Error Hidden Output
Structure Error Algorithm | Function Activation Activation
MLP 5-4-1 0.0055 BFGS 44 SSE Tanh Logistic
MLP 5-3-1 0.0057 BFGS 32 SSE Tanh Logistic
MLP 5-10-1 0.0058 BFGS 83 SSE Tanh Identify
MLP 5-11-1 0.0059 BFGS 18 SSE Logistic Logistic
MLP 5-22-1 0.0058 BFGS 44 SSE Tanh Sine

As illustrated in Figure 7.2, the MLP neural netlwsuccessfully predicts biogas

production based on input variables. It implies Midural network learns the

relationship between the input variables to thesligr and the output biogas production.

Most biogas production patterns and peaks arelglesrognized by the model built,

except of the data points 70 and 110 with the ssalind the largest values. Prediction

accuracy of these two points and that of their Inleags is low, likely due to noise in the

data.
30000
.
25000 A
‘ﬂ © 1 $ 9, )
— o / ‘ * * b 4 at . T L}
3 H T‘.’ " T N ' [(fe ®» . ¥ 2| ¢ b o w s
Z ‘ ; ‘ a 9 YL 7
E AR ﬂ wh S . atn RLMN L R A M g
£ 20000 s8¢ T4l |t i N e Y4 LGl ® s & ?'. 'l |
g | 1 et ¥ l.‘,‘ ¢ dh g P Y Y o Ly [[ ¢ o o \
§ T !, 5"-l.l o ..‘.; ¢ ? ¢ R | f‘ *‘0 '.- '
E i \ & e e I
S 15000 l i o ¢ § S
L]
- : Lt
§D .
L2
2 10000

5000

11 21

31

+—Observed —= Predicted

41 51 61 71

Time (day)

81 91 101 111 121

131 141

Figure 7.2. Observed and neural network model ptedibiogas production
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Performance of the MLP neural network derived mdda been compared with
other four data-mining algorithms, classificatiodaegression tree (C&RT), random
forest, k-nearest neighbor (KNN) and support ventachine (SVM). These algorithms
can be used for classification and regression amglBy assigning the proper value for
the object to be the average of the values of itedrest neighbors, KNN can be applied
for regression. Training the SVM model on a databet function dependence of the
dependent variable on a set of independent vadatale be estimated for regression

problems. Figure 7.3 to 7.6 show the observed aadigted biogas production by
C&RT, random forest, KNN and SVM.
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Figure 7.3. Observed and C&RT model predicted qgaduction
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Figure 7.6. Observed and SVM model predicted biggaduction

The comparative results in Table 7.4 demonstratethe prediction model built
by the MLP neural network offers better predictamturacy than the other models.
Specifically, the mean absolute percentage errtine@tonstructed model is 0.07. This
error expresses the relative accuracy of the médacttional bias at 0.00 indicates a
satisfactory agreement between the predicted andliberved value. The root mean
square error of the model is 68,302, which is gdarumber. However, the value of the
biogas production could be larger than 28,317 m&/klatively small difference
between predicted and observed value will causege Iroot mean square error.
Normalized mean square error expressing the nazethhiverage of the square error is
0.01 for the built model. The index of agreemen® @0 indicates a high correlation
between the predicted and observed values. Thetdoeparison of PE and FB among

all five data-mining algorithms can be seen in Fégu.7.
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Table 7.4. Performance metrics

PE FB | RMSE| NMSE| IA
NN 0.07 0.00 | 68,302 0.01 0.99
C&RT 0.15 0.08 | 139,378 0.04 0.99

Random forest 0.10 0.01 86,836 0.0L 0.99
K-nearest 0.12 0.01 | 110,666 0.02 0.99
neighbor
SVM 0.13 0.04 | 110,898 0.02 0.99

0.16

0.14

0.12
0.1

0.08

0.06 m PE

0.04 mFB

0.02
0

FB

C&RT
Random
K-nearest

SVM
forest neighbor

Figure 7.7. Comparison among five algorithms

According to above results and analysis, the MLEralenetwork model performs
better than models built by the remaining four eataing algorithms. Therefore, MLP

neural network has been selected to optimize thgdsi production process.

7.4 Optimization of the biogas production

7.4.1 Problem formulation

The model trained by the MLP neural network waslduseconstruct the
optimization model. To optimize the biogas prodorctprocess, the single objective can

be expressed as a function of control variablesoAding to the operation conditions at
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WRF, the digester temperature was constrained 82:/22°C to 40.56°C, the total solids
was constrained between 2% and 12%, the volatiié Baction was constrained from
65% to 85%, and the pH value was constrained bet®eeand 8.0. The single
optimization problem can then be presented in (7.2)

max f (%, Xz, X3,X U1 U 51 5)

X1, X2,X3,Xg

subject to:
32.22< x, < 40.5¢

2%< X, < 12%
65%s< X, < 85%
6.8< x, < 8.0 (7.2)

where f is the function in Eq. (7.1) and refershte model built in Section 3. The
descriptions of the seven input variables of mg¢d&l) are shown in Table 7.1.

Solving the complex biogas production model withttmeanatical programming
algorithms is a challenge. Heuristic search alpari like greedy search [132], and
evolutional algorithms like genetic algorithm [138fe good choices for solving complex
models. In this chapter, the standard PSO alguanitlas applied in this research to solve
model (7.2). The standard PSO algorithm is presiemést.

Step 1: Randomly initialize n particle positiahs§] R" and velocities; OR".
Step 2: Evaluate fitness value using current particle positions.
If f <f° thenf’=1f, p’=d,
If f,<f9 thenf9=1, p’=d
Step 3: Update all particle velocitiers
V=V ton(p —d) +er(p’ —d)
Step 4: Update all particle positiods
d=d +v
Step 5: Update fitness valid and f°
Step 6: If the stopping condition is satisfied,rthE’is the final optimal solution with the

particle positiorp®. Otherwise, return to step 3 to start next iterati
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Here, the dimension for each particle’s positthrand velocityv. is 4. Parameter
p,bis the best individual particle position, afdis the best global positiore, andc, are
cognitive and social parameters, they are setiasts researchr, andr, are random

numbers between 0 and 1. Figure 7.8 shows thedta#t diagram of the PSO algorithm.

Start

Randomly initialize all particle
positions and velocities

|

Evaluate fitness value using
current particle positions

l

H Update all particle velocities |
|

| Update all particle positions |

| Update particle fitness value |

Stopping criterion
satisfied?

Figure 7.8. Flow chart diagram of the PSO algorithm

7.4.2 Results and discussion

The test set was used to solve model (7.2) witiPtB® algorithm. In each
iteration, the trained MLP neural network is usegtedict the biogas production based
on controllable and uncontrollable variables. THePSO algorithm determines the best

fithess value (here biogas production) by detemgrihe settings of controllable
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variables. The initial parameters of the PSO atbariare as follows: the population size
is 50 and the maximum number of iterations is §€0a

To obtain a stable production of biogas, uncharapetational conditions for a
period of time is preferable, e.g., a full seasme optimal setting is used for all the time
in this period. The optimal value of each contrioléavariable is first investigated
separately, i.e., only one variable is optimizeche@me. The optimal value of process
temperature is found as 39.0 °C (see Figure 7.¢hiooptimization results). Under the
operational condition in which process temperateisto 39.0 °C, the biogas production
can be improved by 5.3%. The increased biogas ptmduis due to the optimization of
controllable setting based on the prediction mad&q. (7.1). It can be seen that the
computed biogas production is usually larger thenabserved values. Moreover, the
production for the test period shows less varigbihan the actual values, which have
very large differences on a daily basis. The stahtput is beneficial for the biogas

production process and plant operations.
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Figure 7.9. Observed and optimized biogas prodnatiwder optimal temperature setting
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Biogas production at different total solids concation is also investigated. As
shown with the dotted line in Figure 7.10, biogasdoiction is increasing with the raise
of the total solids concentration from 2% to 12%w+éver, Table 7.5 illustrates that the
biogas production decreases when total solids crateon is less than 5%. This is due
to the average value of total solids concentraitiaine test dataset being around 5%.
When total solids concentration is larger than B%gas production is rising until it
reaches the maximum value for the total solids entration reaching its upper

constraining limit.
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Figure 7.10. Biogas production with total solidsicentration

It is observed that the increase slows down as $otals concentration becomes
larger. The relationship between biogas produddiae total solids concentration can be
fitted with the power function in (7.3) (the solide in Figure 7.5).

y=a*(Ts)" (7.3)
where y is the biogas production, TS is total sotidncentration, a and b are constants of

the power function. Here, a and b are computed3328107 and 0.1378, respectively.
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The value of power coefficient b is much smallerthhe value obtained by Igoni et al.
(2007) which was 2.77. The authors believe thavtiee of the power coefficient
calculated in this research is more reasonablewr€ig.5 illustrates the relationship
between the rate of biogas production and totadilsaoncentration. Equation (7.3)
indicates that if the power coefficient is smatlean 1, total solids concentration does not
significantly increase biogas production. The skidgll become more acidic with higher

total solids concentration (Itodo and Awulu, 1999).

Table 7.5. Biogas production change rate in tha ®aglids concentration

Total solids concentration (%) Change rate (%)
-9.4
-6.3
-3.4
-0.7
1.8
4.0
6.0
7.8
9.4
10.8
12.1

=
RIES[©olo|~Nojos|w(N

It has been determined from this model that thgdsgoroduction reaches its
maximum for the total solids concentration of 12gure 7.11 shows the results of
biogas production for the optimized total solid centration. The total biogas production
can be increased up to 12.1%. The biogas produg#das in response to the sludge
flow rate and other input variables. However, trasiability is small which implies
stabile biogas output. The biogas production whhtotal solids concentration higher
than 12% is also studied, even though this conagotr is outside the range of the WRF

operating conditions. It has been found that tlogds production increases 17% when
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the total solids concentration is 20%. Due to #atively small data sample, the

accuracy cannot be validated; however, it is exguktitat there is a certain point at which

the biogas production will not increase even adala solids concentration gets higher.

A possible reason is the decrease of the wateenoit the sludge, with the higher total

solids concentration resulting in a reduced levelative microorganism-digesting

activities.
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Figure 7.11. Observed and optimized biogas prodnatnhder optimal total solids setting

It has determined the optimal pH value of 6.8. @ittes operations condition,

biogas production increased 1.9%. As shown in Eigut2, biogas production has

increased compared to the biogas production uniggnal sampled pH values. This

proves that pH in the range 6.8 to 8.0 has a siighact on biogas production. Figure

7.13illustrates the impact of pH on biogas produttiA slight decrease of biogas

production at higher pH values is observed.
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Figure 7.12. Observed and optimized biogas production for pH value of 6.8
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Table 7.6. Biogas production change rate in pHeslu

pH value Rate of change (%)
6.8 1.9
6.9 1.0
7.0 0.86
7.1 0.70
7.2 0.54
7.3 0.38
7.4 0.21
7.5 0.05
7.6 -0.11
7.7 -0.29
7.8 -0.45
7.9 -0.63
8.0 -0.79

Table 7.6 indicates that biogas production decreagen pH value is larger than
7.6. This could be due to the fact that the avedi@alue of the test dataset is 7.53. It is
also illustrated that pH has a small impact on &sopgroduction across the range [6.8 -
8.0]. The maximum biogas production is obtainedpidrvalue of 6.8, which is in the
recommended range for anaerobic digestion opesatlors worth to clarify that pH
might contribute to failures affecting the digestjorocess when its values are below 6.0
or above 8.0. For values smaller than 6.0, momi@or basic mixtures ferment at lower
speeds. The introduction of new sludge reduceplthkevel. Digestion will stop or slow
down until the microorganisms have neutralizedaties. High pH values encourage
production of acidic carbon dioxide to neutralire mix.

The PSO algorithm has determined that the optiraktie solids is 75%. Given
this operations condition, biogas production hasgased 0.4%. The results imply that
volatile solids has small impact on biogas productivhen it is in its lower and upper

limits.
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In the case that all controllable variables arénojzed simultaneously, a 20.8%

biogas production increase can be obtained as shofigure 7.14. This is an ideal

situation as not all variables can be adjustedeasame time in wastewater treatment

plant operation practice. The optimal values fovatiables and the increases of biogas

production are summarized in Table 7.7. “NA” meansbeing optimized in that case.
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Figure 7.14. Observed and optimized biogas prodoainder optimal settings of all

variables

Table 7.7. Biogas production increasing rate wyhal settings

Temperature Total solids | Volatile solids pH Increasing
(°C) (%0) (%) rate (%)
1 39.0 NA NA N/A 5.3
2 NA 12 NA N/A 12.1
3 NA NA 75 N/A 0.4
4 NA NA NA 6.8 1.9
5 39.2 12 80 6.8 20.8
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CHAPTER 8
CONCLUSION AND FUTURE WORK

8.1 Conclusion

As the wastewater treatment process is complexdgndmic, this dissertation is
focused on developing a framework for its modeklng optimization with a data-driven
approach. The framework includes two categories.firgt category is modeling, where
different data-mining algorithms and techniquesue®d to predict several important
parameters in wastewater process, such as themfifilow rate, the total suspended
solids, CBOD. The second category is optimizatwinere process is optimized by
evolutional algorithms either to save energy congiion or to maximize the energy
generation. The two categories are not separatecoopled together. The predicted
values in the first category will be used as omutnin the optimization in the second
category.

First, the influent flow is forecasted with two dadriven neural networks. To
satisfy the spatial and temporal characteristiaghefinfluent flow, rainfall data collected
at 6 tipping buckets, radar data measured by a sddion and historical influent data
were used as model inputs. The static MLP neuravoré& provided good prediction
accuracy up to 150 min ahead. To extend the timizdvo of predictions, to 300 min, a
dynamic neural network with an online corrector \wagposed. The time lag appeared in
MLP neural network model was significantly reducéble extended time horizon is
useful for energy efficiency management of WTTPs.

Second, data-mining algorithms are applied to ptesS in wastewater.
Numerous scenarios involving carbonaceous biochamig/gen demand (CBOD) and
influent flow rate were investigated to constru TSS time-series. The multi-layered
perceptron (MLP) model performed best among the different data-mining models

that were derived for predicting TSS. The accumadye predictions was improved
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further by an iterative construction of MLP algbnt models. The values of TSS were
predicted seven days in advance with accuraci¢sdahged from 73% to 79%.

And numerous models predicting carbonaceous biodatimxygen demand
(CBOD) is also investigated in Chapter 4. The penfnce of individual seasonal
models was found to be better for fall and wineasons, when the CBOD values were
high. For low CBOD values, the modified seasonatiel® were found most accurate.
Predictions for up to five days ahead were perfatnide reason for the low accuracy of
some of the models presented in the research wdewhfrequency (24 h) of the input
data. Once higher frequency data becomes availd@grediction accuracy of CBOD
will be improved. Such data will also allow the é&pment of accurate models for
predicting the potential of hydrogen (pH) and tbi&alt suspended solid (TSS).

Chapter 5 and all subsequent chapters focus omizatiion of the process. In
Chapter 5, optimization of wastewater pumping pssde presented. 20 cases of different
operating pump combinations are found through tllected dataset. To minimize
energy consumption, a single-objective optimizatioodel is formulated and solved with
the proposed two-level intelligent algorithm. Basedthe operation practice, decision
variables are the number of operating pumps asdhnge and the rotating speed of the
pump. The computational results revealed that @fstgnt energy reduction was
observed when the pumping station running undemopéd optimal settings. The wet
well level and outflow rate had not big differermefore and after optimization.

Chapter 6 focuses on the energy efficiency of tiwated sludge process. Two
objectives are considered, i.e., minimizing thergpeise and maximizing the effluent
quality. Two control strategies, constant and houdriable DO concentrations, are
investigated to find the optimal DO concentratiémrsthree different scenarios
representing the preference over energy savinfflaest quality. The computational
results indicated as much as 16% of the energy instb@ process could be saved when

preference was given to energy saving. A scenhabdave equal importance to energy
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saving and effluent quality was recommended tolgafeerate the activated sludge
process. It could save 10% of the energy consuniidhourly-variable, optimal DO
concentrations.

Optimization of biogas production is presented ihagter 7. Controllable
variables, temperature, total solids, volatile dslipH, and uncontrollable variables,
sludge flow rate, organic load, and detention twezre selected to build a prediction
model for biogas production with a multi-layer pgptron neural network. To optimize
biogas production, a single-objective optimizatinadel is formulated and solved with a
particle swarm optimization algorithm. The compiga&l results demonstrated that a
20.8% increase could be obtained when all contrtdlaalues were set to the optimal

values at the same time.

8.2 Future research

The research reported in this thesis indicatesabatrate prediction models
resulting in significant energy savings can be ttgwed. The predicted influent flow rate,
TSS and CBOD concentration in the raw wastewatempcavide useful information to
manage the plant. The optimized settings, sucluagspeed, configurations,
temperature of the sludge, dissolved oxygen conaton in the aeration tank, etc., can
give useful information to the plant operatorsawesenergy or improve the biogas
production.

Future research should focus on implementatiorherptoposed framework in
the wastewater treatment plant. To apply the rebda the wastewater industry, the
knowledge from the research must be transferrédetdreatment plant. A platform needs
to be created with the efforts from both researath the plant. To provide real-time
influent flow rate information to the plant, a pragy must be developed to collect and
read the upstream flow information, and output lgytiphical and texted predicting

values after processing the data and modelingeabdlckground. The similar work should
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be executed for predicting TSS, CBOD, as well ofation of pumping process, the
activated sludge process and maximizing the bipgaduction. During the
implementation, the problems can be found and solVhese real-time experiments will
improve the confidence of the plant to continue laypphe data-driven approach to
manage the wastewater treatment process rathectmarol the settings based on the
experience.

Another future direction is the integration of wars concepts reported in this
dissertation into a comprehensive model. The actishga tasks cover the main
processes in the wastewater treatment plant. ItduMoel interesting to create an
integration program which could show all prediciefdrmation and optimized variable
settings with only several inputs such as upstréamrates and local temperature, etc. A
plant operator then could read the information enade decisions to optimally manage
the plant.

As the online sensors are expensive and requigeérgly maintenance,
developing virtual sensors with a data-driven apphois worth to be studied in the future.
Using virtual sensors can not only save the investroost of the devices and high
maintenance expenses, but also significantly deertee noise generated by online
sensors. They can be also used to provide inpuil the missing values in the collected

dataset, which lead to higher accuracy of the ptedj models.
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